Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Arch Toxicol ; 98(5): 1383-1398, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38485782

RESUMEN

Homosalate (HMS) is a UV filter used in sunscreens and personal care products as a mixture of cis- and trans-isomers. Systemic absorption after sunscreen use has been demonstrated in humans, and concerns have been raised about possible endocrine activity of HMS, making a general population exposure assessment desirable. In a previous study, it was shown that the oral bioavailability of cis-HMS (cHMS) is lower than that of trans-HMS (tHMS) by a factor of 10, calling for a separate evaluation of both isomers in exposure and risk assessment. The aim of the current study is the investigation of HMS toxicokinetics after dermal exposure. Four volunteers applied a commercial sunscreen containing 10% HMS to their whole body under regular-use conditions (18-40 mg HMS (kg bw)-1). Parent HMS isomers and hydroxylated and carboxylic acid metabolites were quantified using authentic standards and isotope dilution analysis. Further metabolites were investigated semi-quantitatively. Elimination was delayed and slower compared to the oral route, and terminal elimination half-times were around 24 h. After dermal exposure, the bioavailability of cHMS was a factor of 2 lower than that of tHMS. However, metabolite ratios in relation to the respective parent isomer were very similar to the oral route, supporting the applicability of the oral-route urinary excretion fractions for dermal-route exposure assessments. Exemplary calculations of intake doses showed margins of safety between 11 and 92 (depending on the approach) after single whole-body sunscreen application. Human biomonitoring can reliably quantify oral and dermal HMS exposures and support the monitoring of exposure reduction measures.


Asunto(s)
Monitoreo Biológico , Salicilatos , Protectores Solares , Humanos , Administración Cutánea , Toxicocinética
2.
Arch Toxicol ; 98(7): 2199-2211, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38658404

RESUMEN

As part of the safety assessment of salicylate esters in cosmetics, we developed a metabolism factor based on in vitro to in vivo extrapolation (IVIVE) to provide a better estimation of the aggregate internal exposure to the common metabolite, salicylic acid. Optimal incubation conditions using human liver S9 were identified before measuring salicylic acid formation from 31 substances. Four control substances, not defined as salicylic esters but which could be mistaken as such due to their nomenclature, did not form salicylic acid. For the remaining substances, higher in vitro intrinsic clearance (CLint, in vitro) values generally correlated with lower LogP values. A "High-Throughput Pharmacokinetic" (HTPK) model was used to extrapolate CLint, in vitro values to human in vivo clearance and half-lives. The latter were used to calculate the percentage of substance metabolised to salicylic acid in 24 h in vivo following human exposure to the ester, i.e. the "metabolism factor". The IVIVE model correctly reproduced the observed elimination rate of 3 substances using in silico or in vitro input parameters. For other substances, in silico only-based predictions generally resulted in lower metabolism factors than when in vitro values for plasma binding and liver S9 CLint, in vitro were used. Therefore, in vitro data input provides the more conservative metabolism factors compared to those derived using on in silico input. In conclusion, these results indicate that not all substances contribute equally (or at all) to the systemic exposure to salicylic acid. Therefore, we propose a realistic metabolism correction factor by which the potential contribution of salicylate esters to the aggregate consumer exposure to salicylic acid from cosmetic use can be estimated.


Asunto(s)
Ésteres , Ácido Salicílico , Humanos , Ácido Salicílico/farmacocinética , Ácido Salicílico/metabolismo , Cosméticos , Modelos Biológicos , Administración Cutánea , Hígado/metabolismo , Hígado/efectos de los fármacos , Semivida , Piel/metabolismo , Piel/efectos de los fármacos , Simulación por Computador , Absorción Cutánea
3.
Mutagenesis ; 37(1): 13-23, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35302169

RESUMEN

BlueScreen HC is a mammalian cell-based assay for measuring the genotoxicity and cytotoxicity of chemical compounds and mixtures. The BlueScreen HC assay has been utilized at the Research Institute for Fragrance Materials in a safety assessment program as a screening tool to prioritize fragrance materials for higher-tier testing, as supporting evidence when using a read-across approach, and as evidence to adjust the threshold of toxicological concern. Predictive values for the BlueScreen HC assay were evaluated based on the ability of the assay to predict the outcome of in vitro and in vivo mutagenicity and chromosomal damage genotoxicity assays. A set of 371 fragrance materials was assessed in the BlueScreen HC assay along with existing or newly generated in vitro and in vivo genotoxicity data. Based on a weight-of-evidence approach, the majority of materials in the data set were deemed negative and concluded not to have the potential to be genotoxic, while only a small proportion of materials were determined to show genotoxic effects in these assays. Analysis of the data set showed a combination of high positive agreement but low negative agreement between BlueScreen HC results, in vitro regulatory genotoxicity assays, and higher-tier test results. The BlueScreen HC assay did not generate any false negatives, thereby providing robustness when utilizing it as a high-throughput screening tool to evaluate the large inventory of fragrance materials. From the perspective of protecting public health, it is desirable to have no or minimal false negatives, as a false-negative result may incorrectly indicate the lack of a genotoxicity hazard. However, the assay did have a high percentage of false-positive results, resulting in poor positive predictivity of the in vitro genotoxicity test battery outcome. Overall, the assay generated 100% negative predictivity and 3.9% positive predictivity. In addition to the data set of 371 fragrance materials, 30 natural complex substances were evaluated for BlueScreen HC, Ames, and in vitro micronucleus assay, and a good correlation in all three assays was observed. Overall, while a positive result may have to be further investigated, these findings suggest that the BlueScreen HC assay can be a valuable screening tool to detect the genotoxic potential of fragrance materials and mixtures.


Asunto(s)
Daño del ADN , Odorantes , Animales , Bioensayo/métodos , Mamíferos , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad
4.
Regul Toxicol Pharmacol ; 134: 105244, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35932886

RESUMEN

Considerable progress has been made in the design of New Approach Methodologies (NAMs) for the hazard identification of skin sensitising chemicals. However, effective risk assessment requires accurate measurement of sensitising potency, and this has proven more difficult to achieve without recourse to animal tests. One important requirement for the development and adoption of novel approaches for this purpose is the availability of reliable databases for determining the accuracy with which sensitising potency can be predicted. Some previous approaches have relied on comparisons with potency estimates based on either human or animal (local lymph node assay) data. In contrast, we here describe the development of a carefully curated Reference Chemical Potency List (RCPL) which is based on consideration of the best available human and animal data. The RCPL is comprised of 33 readily available chemicals that span a wide range of chemistry and sensitising potency, and contain examples of both direct and indirect (pre- and pro-) haptens. For each chemical a potency value (PV) was derived, and chemicals ranked according to PV without the use of potency categories. It is proposed that the RCPL provides an effective resource for assessment of the accuracy with which NAMs can measure skin sensitising potency.


Asunto(s)
Dermatitis Alérgica por Contacto , Alternativas a las Pruebas en Animales , Animales , Dermatitis Alérgica por Contacto/etiología , Dermatitis Alérgica por Contacto/patología , Haptenos , Humanos , Ensayo del Nódulo Linfático Local , Medición de Riesgo/métodos , Piel
5.
Crit Rev Toxicol ; 51(10): 792-804, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-35142253

RESUMEN

The induction of immunological responses that trigger bio-physiological symptoms in the respiratory tract following repeated exposure to a substance, is known as respiratory sensitization. The inducing compound is known as a respiratory sensitizer. While respiratory sensitization by high molecular weight (HMW) materials is recognized and extensively studied, much less information is available regarding low molecular weight (LMW) materials as respiratory sensitizers. Variability of symptoms presented in humans from such exposures, limited availability of (and access to) documented reports, and the absence of standardized and validated test models, hinders the identification of true respiratory sensitizers. This review aims to sort suspected LMW respiratory sensitizers based on available compelling, reasonable, inadequate, or questionable evidence in humans from occupational exposures and use this information to compose a reference list of reported chemical respiratory sensitizers for scientific research purposes. A list of 97 reported respiratory sensitizers was generated from six sources, and 52 LMW organic chemicals were identified, reviewed, and assigned to the four evidence categories. Less than 10 chemicals were confirmed with compelling evidence for induction of respiratory sensitization in humans from occupational exposures. Here, we propose the reference list for developing novel research on respiratory sensitization.


Asunto(s)
Exposición Profesional , Sistema Respiratorio , Alérgenos/toxicidad , Humanos , Peso Molecular
6.
Regul Toxicol Pharmacol ; 118: 104805, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33075411

RESUMEN

In 2008, a proposal for assessing the risk of induction of skin sensitization to fragrance materials Quantitative Risk Assessment 1 (QRA1) was published. This was implemented for setting maximum limits for fragrance materials in consumer products. However, there was no formal validation or empirical verification after implementation. Additionally, concerns remained that QRA1 did not incorporate aggregate exposure from multiple product use and included assumptions, e.g. safety assessment factors (SAFs), that had not been critically reviewed. Accordingly, a review was undertaken, including detailed re-evaluation of each SAF together with development of an approach for estimating aggregate exposure of the skin to a potential fragrance allergen. This revision of QRA1, termed QRA2, provides an improved method for establishing safe levels for sensitizing fragrance materials in multiple products to limit the risk of induction of contact allergy. The use of alternative non-animal methods is not within the scope of this paper. Ultimately, only longitudinal clinical studies can verify the utility of QRA2 as a tool for the prevention of contact allergy to fragrance materials.


Asunto(s)
Alérgenos/toxicidad , Dermatitis Alérgica por Contacto/etiología , Odorantes , Pruebas de Irritación de la Piel , Piel/efectos de los fármacos , Alérgenos/análisis , Seguridad de Productos para el Consumidor , Dermatitis Alérgica por Contacto/inmunología , Dermatitis Alérgica por Contacto/prevención & control , Relación Dosis-Respuesta a Droga , Humanos , Medición de Riesgo , Piel/inmunología
7.
Regul Toxicol Pharmacol ; 109: 104477, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31586681

RESUMEN

Four years on since the last cross sector workshop, experience of the practical application and interpretation of several non-animal assays that contribute to the predictive identification of skin sensitisers has begun to accumulate. Non-animal methods used for hazard assessments increasingly are contributing to the potency sub-categorisation for regulatory purposes. However, workshop participants generally supported the view that there remained a pressing need to build confidence in how information from multiple methods can be combined for classification, sub-categorisation and potency assessment. Furthermore, the practical experience gained over the last few years, highlighted the overall high potential value of using the newly validated methods and testing strategies, but also that limitations for certain substance/product classes may become evident with further use as had been the case with other new regulatory methods. As the available information increases, review of the data and collated experience could further determine strengths and limitations leading to more confidence in their use. Finally, the need for a substantial and universally accepted dataset of non-sensitisers and substances of different sensitising potencies, based on combined human and in vivo animal data for validation of methods and test strategies was re-emphasised.


Asunto(s)
Alternativas a las Pruebas en Animales , Congresos como Asunto , Proyectos de Investigación/normas , Piel/efectos de los fármacos , Pruebas de Toxicidad/normas , Conjuntos de Datos como Asunto , Europa (Continente) , Piel/inmunología , Pruebas Cutáneas/métodos , Pruebas Cutáneas/normas
8.
Regul Toxicol Pharmacol ; 67(3): 531-5, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24140884

RESUMEN

In a previous EPAA-Cefic LRI workshop in 2011, issues surrounding the use and interpretation of results from the local lymph node assay were addressed. At the beginning of 2013 a second joint workshop focused greater attention on the opportunities to make use of non-animal test data, not least since a number of in vitro assays have progressed to an advanced position in terms of their formal validation. It is already recognised that information produced from non-animal assays can be used in regulatory decision-making, notably in terms of classifying a substance as a skin sensitiser. The evolution into a full replacement for hazard identification, where the decision is not to classify, requires the generation of confidence in the in vitro alternative, e.g. via formal validation, the existence of peer reviewed publications and the knowledge that the assay(s) are founded on key elements of the Adverse Outcome Pathway for skin sensitisation. It is foreseen that the validated in vitro assays and relevant QSAR models can be organised into formal testing strategies to be applied for regulatory purposes by the industry. To facilitate progress, the European Partnership for Alternative Approaches to animal testing (EPAA) provided the platform for cross-industry and regulatory dialogue, enabling an essential and open debate on the acceptability of an in vitro based integrated strategy. Based on these considerations, a follow up activity was agreed upon to explore an example of an Integrated Testing Strategy for skin sensitisation hazard identification purposes in the context of REACH submissions.


Asunto(s)
Alternativas a las Pruebas en Animales , Dermatitis Alérgica por Contacto/etiología , Regulación Gubernamental , Sustancias Peligrosas/toxicidad , Piel/efectos de los fármacos , Alternativas a las Pruebas en Animales/legislación & jurisprudencia , Alternativas a las Pruebas en Animales/métodos , Alternativas a las Pruebas en Animales/tendencias , Animales , Congresos como Asunto , Unión Europea , Sustancias Peligrosas/química , Humanos , Cooperación Internacional
9.
Environ Int ; 170: 107637, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36423396

RESUMEN

Homosalate (HMS) is a salicylate UV filter broadly used in sunscreens and personal care products. The aim of this study was the collection of human toxicokinetic data on HMS as a tool for risk assessment. For this purpose, metabolism and urinary excretion after a single oral HMS dose (98.2-149.1 µg (kg body weight)-1) were investigated in four volunteers (two male, two female). As commercial products generally contain a mixture of cis- and trans-HMS, both cis-rich and trans-rich isomer mixtures were studied to investigate possible differences in metabolism. Initial metabolite screening tentatively identified six oxidative metabolite subgroups, of which hydroxylated and carboxylic acid metabolites were studied in more detail. Unchanged parent HMS and the previously identified HMS metabolites 5-((2-hydroxybenzoyl)oxy)-3,3-dimethylcyclohexane-1-carboxylic acid (HMS-CA) and 3-hydroxy-3,5,5-trimethylcyclohexyl 2-hydroxybenzoate (3OH-HMS), respectively, were quantified separately as cis- and trans-isomers via authentic standards by isotope dilution analysis. In addition, further alkyl-hydroxylated and carboxylic acid metabolites were investigated semi-quantitatively. Peak concentrations in urine were reached 1.5-6.3 h post-dose and more than 80 % of each of the quantitatively investigated metabolites (and at least 70 % of the semi-quantitatively investigated metabolites) was excreted within the first 24 h. Plasma and urine data indicated that oral bioavailability of cis-HMS was one order of magnitude below that of trans-HMS. Furthermore, the mean total urinary excretion fraction (Fue) for the metabolites derived from trans-HMS (6.4 %) was two orders of magnitude higher than for the metabolites derived from cis-HMS (0.045 %). Our data proves diastereoselectivity in toxicokinetics of cis- and trans-HMS, emphasizing the necessity to address isomer ratios in future studies including HMS exposure and risk assessments.


Asunto(s)
Biomarcadores , Protectores Solares , Femenino , Humanos , Masculino
10.
Toxicol Lett ; 309: 35-41, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30953687

RESUMEN

The UV filter 2-ethylhexyl salicylate (EHS) is used in sunscreens and other personal care products worldwide and has been found in a variety of environmental media. We aimed to provide human toxicokinetic data on EHS as a tool for risk assessment. For that purpose, we investigated metabolism and urinary metabolite excretion after a single oral EHS dose (57.4-75.5 µg/(kg body weight)) in three male volunteers. In a suspect screening, we tentatively identified seven EHS metabolites. Three EHS specific metabolites were quantitatively investigated: 2-ethyl-5-hydroxyhexyl 2-hydroxybenzoate (5OH-EHS), 2-ethyl-5-oxohexyl 2-hydroxybenzoate (5oxo-EHS), and 5-(((2-hydroxybenzoyl)oxy)methyl)heptanoic acid (5cx-EPS). These metabolites were excreted with urinary excretion fractions of 0.28% (range: 0.13-0.54%), 0.11% (0.06-0.20%), and 0.24% (0.14-0.41%), respectively. The elimination was fast: peak urinary concentrations were found 1.6-2.6 h after dose and ≥95% of the total amounts were excreted within 24 h. Elimination kinetics were biphasic, with mean elimination half-lives of 0.8 h (first phase) and 6.6 h (second phase) for 5OH-EHS, 0.8 h and 6.3 h for 5oxo-EHS, and 1.1 h and 5.9 h for 5cx-EPS. After dermal exposure (sunscreen application), we found a considerably delayed EHS elimination. Based on urinary metabolite levels we calculated EHS exposure levels for a small pilot population.


Asunto(s)
Salicilatos/metabolismo , Protectores Solares/metabolismo , Administración Oral , Adulto , Biomarcadores , Eliminación Cutánea , Exposición a Riesgos Ambientales , Humanos , Masculino , Medición de Riesgo , Piel/metabolismo
11.
Regul Toxicol Pharmacol ; 52(1): 3-23, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18406028

RESUMEN

Based on chemical, cellular, and molecular understanding of dermal sensitization, an exposure-based quantitative risk assessment (QRA) can be conducted to determine safe use levels of fragrance ingredients in different consumer product types. The key steps are: (1) determination of benchmarks (no expected sensitization induction level (NESIL)); (2) application of sensitization assessment factors (SAF); and (3) consumer exposure (CEL) calculation through product use. Using these parameters, an acceptable exposure level (AEL) can be calculated and compared with the CEL. The ratio of AEL to CEL must be favorable to support safe use of the potential skin sensitizer. This ratio must be calculated for the fragrance ingredient in each product type. Based on the Research Institute for Fragrance Materials, Inc. (RIFM) Expert Panel's recommendation, RIFM and the International Fragrance Association (IFRA) have adopted the dermal sensitization QRA approach described in this review for fragrance ingredients identified as potential dermal sensitizers. This now forms the fragrance industry's core strategy for primary prevention of dermal sensitization to these materials in consumer products. This methodology is used to determine global fragrance industry product management practices (IFRA Standards) for fragrance ingredients that are potential dermal sensitizers. This paper describes the principles of the recommended approach, provides detailed review of all the information used in the dermal sensitization QRA approach for fragrance ingredients and presents key conclusions for its use now and refinement in the future.


Asunto(s)
Dermatitis Alérgica por Contacto/diagnóstico , Perfumes/efectos adversos , Pruebas Cutáneas/métodos , Animales , Benchmarking/métodos , Dermatitis Alérgica por Contacto/etiología , Dermatitis Alérgica por Contacto/prevención & control , Humanos , Nivel sin Efectos Adversos Observados , Medición de Riesgo/métodos
12.
J Invest Dermatol ; 122(5): 1154-64, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15140218

RESUMEN

Development of in vitro models to identify sensitizing chemicals receives public interest since animal testing should be avoided whenever possible. In this article we analyze two essential properties of sensitizing chemicals: skin penetration and dendritic cell (DC) activation. Activation of immature DC derived from peripheral blood monocytes was evaluated by flow cytometric analysis of CD86 positive cells and quantitative measurement of interleukin-1beta and aquaporin P3 gene expression. The sensitizer 2,4,6-trinitrobenzenesulfonic acid induced a concentration-dependent response for all parameters, whereas the irritant sodium lauryl sulfate did not. When two related aromatic amines, p-toluylenediamine (PTD) and hydroxyethyl-p-phenylenediamine (HE-PPD) were tested, both induced substantial DC activation indicating their potential sensitizing properties. These findings contrasted with in vivo results: in murine local lymph node assays (LLNA) PTD, but not HE-PPD, was sensitizing using acetone/aqua/olive oil as vehicle. Skin penetration measurement revealed that this was due to bioavailability differences. On retesting HE-PPD in the LLNA using the penetration enhancer dimethylsulfoxide as vehicle, it induced a specific response. We conclude that in vitro analysis of DC activation capability of the two selected chemicals demonstrates that prediction of skin sensitization potential is possible provided that skin penetration data indicate sufficient bioavailability of the test compound.


Asunto(s)
Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Dermatitis Alérgica por Contacto/inmunología , Irritantes/farmacología , Piel/inmunología , Aminas/farmacología , Alternativas a las Pruebas en Animales , Animales , Antígenos CD/análisis , Acuaporina 3 , Acuaporinas/genética , Antígeno B7-2 , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Células Cultivadas , Células Dendríticas/citología , Femenino , Expresión Génica/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Técnicas In Vitro , Interleucina-1/genética , Interleucina-4/farmacología , Glicoproteínas de Membrana/análisis , Ratones , Ratones Endogámicos CBA , Monocitos/química , Monocitos/citología , Monocitos/inmunología , Porcinos
15.
Regul Toxicol Pharmacol ; 38(3): 269-90, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14623479

RESUMEN

In this paper, we propose a quantitative risk assessment methodology for skin sensitization aiming at the derivation of 'safe' exposure levels for sensitizing chemicals, used e.g., as ingredients in consumer products. Given the limited number of sensitizers tested in human sensitization tests, such as the human repeat-insult patch test (HRIPT) or the human maximization test (HMT), we used EC3 values from the local lymph node assay (LLNA) in mice because they provide the best quantitative measure of the skin sensitizing potency of a chemical. A comparison of LLNA EC3 values with HRIPT and HMT LOEL, and NOEL values was carried out and revealed that the EC3, expressed as area dose, can be used as a surrogate value for the human NOEL in risk assessment. The uncertainty/extrapolation factor approach was used to derive (a) an 'acceptable non-sensitizing area dose' (ANSAD) to protect non-allergic individuals against skin sensitization and (b) an 'acceptable non-eliciting area dose' (ANEAD) to protect allergic individuals against elicitation of allergic contact dermatitis. For ANSAD derivation, interspecies, intraspecies and time extrapolation factors are applied to the LLNA EC3. For ANEAD derivation, additional application of a variable sensitization-elicitation extrapolation factor is proposed. Values for extrapolation factors are derived and discussed, the proposed methodology is applied to the sensitizers methylchloroisothiazolinone/methylisothiazolinone, cinnamic aldehyde and nickel and results are compared to published risk assessments.


Asunto(s)
Interpretación Estadística de Datos , Dermatitis Alérgica por Contacto/fisiopatología , Hipersensibilidad/fisiopatología , Proyectos de Investigación , Medición de Riesgo/métodos , Alérgenos/efectos adversos , Animales , Dinamarca , Dermatitis Alérgica por Contacto/etiología , Guías como Asunto , Humanos , Hipersensibilidad/etiología , Ensayo del Nódulo Linfático Local , Ratones , Pruebas del Parche/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA