Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 45(13): 5572-9, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21648436

RESUMEN

The speciation and partitioning of arsenic (As) in surface and subsurface environments are controlled, in part, by redox processes. Within soils and sediments, redox gradients resulting from mass transfer limitations lead to competitive reduction-oxidation reactions that drive the fate of As. Accordingly, the objective of this study was to determine the fate and redox cycling of As at the interface of birnessite (a strong oxidant in soil with a nominal formula of MnO(x), where x ≈ 2) and dissimilatory As(V)-reducing bacteria (strong reductant). Here, we investigate As reduction-oxidation dynamics in a diffusively controlled system using a Donnan reactor where birnessite and Shewanella sp. ANA-3 are isolated by a semipermeable membrane through which As migrates. Arsenic(III) injected into the reaction cell containing birnessite is rapidly oxidized to As(V). Arsenic(V) diffusing into the Shewanella chamber is then reduced to As(III), which subsequently diffuses back to the birnessite chamber, undergoing oxidation, and establishing a continuous cycling of As. However, we observe a rapid decline in the rate of As(III) oxidation owing to passivation of the birnessite surface. Modeling and experimental results show that high [Mn(II)] combined with increasing [CO(3)(2-)] from microbial respiration leads to the precipitation of rhodochrosite, which eventually passivates the Mn oxide surface, inhibiting further As(III) oxidation. Our results show that despite the initial capacity of birnessite to rapidly oxidize As(III), the synergistic effect of intense As(V) reduction by microorganisms and the buildup of reactive metabolites capable of passivating reactive mineral surfaces-here, birnessite-will produce (bio)geochemical conditions outside of those based on thermodynamic predictions.


Asunto(s)
Arsénico/química , Arsénico/metabolismo , Sedimentos Geológicos/análisis , Óxidos/química , Shewanella/metabolismo , Suelo/análisis , Modelos Químicos , Oxidación-Reducción , Termodinámica
2.
Environ Sci Technol ; 44(1): 41-6, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20039732

RESUMEN

In situ rates of reductive dissolution in submerged shoreline sediments at Lake Tegel (Berlin, Germany) were measured with a novel hydrous manganese (Mn) oxide-doped gel probe sampler in concert with equilibrium gel probe and sequential extraction measurements. Rates were low in the top 8 cm, then showed a peak from 8 to 14 cm, with a maximum at 12 cm depth. This rate corresponded with a peak in dissolved porewater iron (Fe) at 11 cm depth. Below 14 cm, the reductive dissolution rate reached an intermediate steady value. Lower rates at depth corresponded with increases in operationally defined fractions of carbonate-bound and organic- and sulfide-bound Mn and Fe as detected by sequential extraction. Observed rates of reductive dissolution, which reflect a capacity for Mn reduction rather than actual rates under ambient conditions, appear to correlate with porewater chemistry and sequential extraction fractions as expected in early sediment diagenesis, and are consistent with previous measurements of in situ reductive dissolution rates. Significant downward advection in this bank filtration setting depletes the Mn and Fe oxides in the sediments and enhances the transport of dissolved Fe and Mn into the infiltrating water.


Asunto(s)
Compuestos de Manganeso/química , Óxidos/química , Oxidación-Reducción , Solubilidad , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA