Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052983

RESUMEN

Oxytocin plays an important role in modulating social recognition memory. However, the direct implication of oxytocin neurons of the paraventricular nucleus of the hypothalamus (PVH) and their downstream hypothalamic targets in regulating short- and long-term forms of social recognition memory has not been fully investigated. In this study, we employed a chemogenetic approach to target the activity of PVH oxytocin neurons in male rats and found that specific silencing of this neuronal population led to an impairment in short- and long-term social recognition memory. We combined viral-mediated fluorescent labeling of oxytocin neurons with immunohistochemical techniques and identified the supramammillary nucleus (SuM) of the hypothalamus as a target of PVH oxytocinergic axonal projections in rats. We used multiplex fluorescence in situ hybridization to label oxytocin receptors in the SuM and determined that they are predominantly expressed in glutamatergic neurons, including those that project to the CA2 region of the hippocampus. Finally, we used a highly selective oxytocin receptor antagonist in the SuM to examine the involvement of oxytocin signaling in modulating short- and long-term social recognition memory and found that it is necessary for the formation of both. This study discovered a previously undescribed role for the SuM in regulating social recognition memory via oxytocin signaling and reinforced the specific role of PVH oxytocin neurons in regulating this form of memory.

2.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000096

RESUMEN

The arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5'-bromo-2'-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus. Tangential AVP/GFAP migration routes and AVP/DCX neuronal chains as well as ascending AVP axonal scaffolds were observed. Chronic water deprivation significantly increased the BrdU+ nuclei within both the supraaoptic (SON) and paraventricular (PVN) nuclei. These findings raise new questions about AVPMNS's potential hormonal role for brain physiological adaptation across the lifespan, with possible involvement in coping with homeostatic adversities.


Asunto(s)
Movimiento Celular , Proteína Doblecortina , Neurogénesis , Neuronas , Animales , Ratas , Neuronas/metabolismo , Neuronas/citología , Masculino , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Hipotálamo/metabolismo , Hipotálamo/citología , Arginina Vasopresina/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(42): 26406-26413, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020267

RESUMEN

Oxytocin increases the salience of both positive and negative social contexts and it is thought that these diverse actions on behavior are mediated in part through circuit-specific action. This hypothesis is based primarily on manipulations of oxytocin receptor function, leaving open the question of whether different populations of oxytocin neurons mediate different effects on behavior. Here we inhibited oxytocin synthesis in a stress-sensitive population of oxytocin neurons specifically within the medioventral bed nucleus of the stria terminalis (BNSTmv). Oxytocin knockdown prevented social stress-induced increases in social vigilance and decreases in social approach. Viral tracing of BNSTmv oxytocin neurons revealed fibers in regions controlling defensive behaviors, including lateral hypothalamus, anterior hypothalamus, and anteromedial BNST (BNSTam). Oxytocin infusion into BNSTam in stress naïve mice increased social vigilance and reduced social approach. These results show that a population of extrahypothalamic oxytocin neurons plays a key role in controlling stress-induced social anxiety behaviors.


Asunto(s)
Ansiedad/metabolismo , Oxitocina/metabolismo , Estrés Psicológico/fisiopatología , Animales , Ansiedad/etiología , Reacción de Prevención/efectos de los fármacos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Femenino , Hipotálamo/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Oxitocina/fisiología , Peromyscus/metabolismo , Receptores de Oxitocina/metabolismo , Núcleos Septales/fisiología , Conducta Social , Estrés Psicológico/metabolismo
4.
Mol Psychiatry ; 26(1): 265-279, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32514104

RESUMEN

The neuropeptide oxytocin has attracted great attention of the general public, basic neuroscience researchers, psychologists, and psychiatrists due to its profound pro-social, anxiolytic, and "anti-stress" behavioral and physiological effects, and its potential application for treatment of mental diseases associated with altered socio-emotional competence. During the last decade, substantial progress has been achieved in understanding the complex neurobiology of the oxytocin system, including oxytocinergic pathways, local release patterns, and oxytocin receptor distribution in the brain, as well as intraneuronal oxytocin receptor signaling. However, the picture of oxytocin actions remains far from being complete, and the central question remains: "How does a single neuropeptide exert such pleotropic actions?" Although this phenomenon, typical for many of about 100 identified neuropeptides, may emerge from the anatomical divergence of oxytocin neurons, their multiple central projections, distinct oxytocin-sensitive cell types in different brain regions, and multiple intraneuronal signaling pathways determining the specific cellular response, further basic studies are required. In conjunction, numerous reports on positive effects of intranasal application of oxytocin on human brain networks controlling socio-emotional behavior in health and disease require harmonic tandems of basic researchers and clinicians. During the COVID-19 crisis in 2020, oxytocin research seems central as question of social isolation-induced inactivation of the oxytocin system, and buffering effects of either activation of the endogenous system or intranasal application of synthetic oxytocin need to be thoroughly investigated.


Asunto(s)
Encéfalo/fisiología , COVID-19/psicología , Oxitocina/fisiología , Aislamiento Social/psicología , Animales , Humanos , Modelos Neurológicos , Vías Nerviosas/fisiología
5.
Addict Biol ; 27(5): e13217, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36001434

RESUMEN

The purpose of this study was to determine if social vs nonsocial cues (peer vs light/tone) can serve as discriminative stimuli to reinstate cocaine seeking. In addition, to assess a potential mechanism, an oxytocin (OT) promoter-linked hM3Dq DREADD was infused into the paraventricular nucleus of the hypothalamus to determine whether peer-induced cocaine seeking is decreased by activation of OT neurons. Male rats underwent twice-daily self-administration sessions, once with cocaine in the presence of one peer (S+) and once with saline in the presence of a different peer (S-). Another experiment used similar procedures, except the discriminative stimuli were nonsocial (constant vs flashing light/tone), with one stimulus paired with cocaine (S+) and the other paired with saline (S-). A third experiment injected male and female rats with OTp-hM3Dq DREADD or control virus into PVN and tested them for peer-induced reinstatement of cocaine seeking following clozapine (0.1 mg/kg). Although acquisition of cocaine self-administration was similar in rats trained with either peer or light/tone discriminative stimuli, the latency to first response was reduced by the peer S+, but not by the light/tone S+. In addition, the effect of the conditioned stimulus was overshadowed by the peer S+ but not by the light/tone S+. Clozapine blocked the effect of the peer S+ in rats receiving the OTp-hM3Dq DREADD virus, but not in rats receiving the control virus. These results demonstrate that a social peer can serve as potent trigger for drug seeking and that OT in PVN modulates peer-induced reinstatement of cocaine seeking.


Asunto(s)
Clozapina , Trastornos Relacionados con Cocaína , Cocaína , Animales , Clozapina/farmacología , Cocaína/farmacología , Señales (Psicología) , Extinción Psicológica , Femenino , Masculino , Neuronas , Oxitocina/farmacología , Núcleo Hipotalámico Paraventricular , Ratas , Autoadministración
6.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077337

RESUMEN

Alcohol use disorder (AUD) is a major global mental health challenge. Knowledge concerning mechanisms underlying AUD and predictive biomarkers of AUD progression and relapse are insufficient. Recently, addiction research is focusing attention on the oxytocin system. However, to our knowledge, blood concentrations of the oxytocin receptor (OXTR) have not yet been studied in AUD. Here, in sex-separated analyses, OXTR serum concentrations were compared between early-abstinent in-patients with AUD (113 men, 87 women) and age-matched healthy controls (133 men, 107 women). The OXTR concentrations were correlated with sex hormone and oxytocin concentrations and alcohol-related hospital readmissions during a 24-month follow-up. In male patients with AUD, higher OXTR concentrations were found in those with an alcohol-related readmission than in those without (143%; p = 0.004), and they correlated with more prospective readmissions (ρ = 0.249; p = 0.008) and fewer days to the first readmission (ρ = -0.268; p = 0.004). In men and women, OXTR concentrations did not significantly differ between patients with AUD and controls. We found lower OXTR concentrations in smokers versus non-smokers in female patients (61%; p = 0.001) and controls (51%; p = 0.003). In controls, OXTR concentrations correlated with dihydrotestosterone (men, ρ = 0.189; p = 0.030) and testosterone concentrations (women, ρ = 0.281; p = 0.003). This clinical study provides novel insight into the role of serum OXTR levels in AUD. Future studies are encouraged to add to the available knowledge and investigate clinical implications of OXTR blood concentrations.


Asunto(s)
Alcoholismo , Receptores de Oxitocina , Etanol , Femenino , Humanos , Masculino , Recurrencia Local de Neoplasia , Oxitocina , Readmisión del Paciente , Estudios Prospectivos
7.
Cell Tissue Res ; 375(1): 259-266, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29961215

RESUMEN

Familial neurohypophysial diabetes insipidus (FNDI), characterized by delayed-onset progressive polyuria and loss of arginine vasopressin (AVP) neuron, is an autosomal dominant disorder caused by AVP gene mutations. We previously generated a knock-in mouse model for FNDI, which recapitulated the phenotype of human FNDI. To address the mechanisms underlying AVP neuron loss, we subjected FNDI mice to intermittent water deprivation, which accelerated the phenotype and induced AVP neuron loss within a relative short period. Electron microscopic analyses revealed that aggregates were confined to a sub-compartment of the endoplasmic reticulum (ER), ER-associated compartment (ERAC), in AVP neurons of FNDI mice under normal conditions. In contrast, aggregates scattered throughout the dilated ER lumen, and phagophores, autophagosome precursors, emerged and surrounded the ER containing scattered aggregates in FNDI mice subjected to water deprivation for 4 weeks, suggesting that failure of ERAC formation leads to autophagy induction for degradation of aggregates. Furthermore, the cytoplasm was entirely occupied with large vacuoles in AVP neurons of FNDI mice subjected to water deprivation for 12 weeks, at which stage 30-40% of AVP neurons were lost. Our data demonstrated that although autophagy should primarily be a protective mechanism, continuous autophagy leads to gradual loss of organelles including ER, resulting in autophagy-associated cell death of AVP neurons in FNDI mice.


Asunto(s)
Autofagia , Diabetes Insípida Neurogénica/metabolismo , Diabetes Insípida Neurogénica/patología , Neuronas/metabolismo , Neuronas/patología , Vasopresinas/metabolismo , Animales , Humanos , Oxitocina/metabolismo , Fenotipo
8.
Cell Tissue Res ; 375(1): 279-286, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30069597

RESUMEN

The discovery of prosocial effects of oxytocin (OT) opened new directions for studying neuropeptide effects on the human brain. However, despite obvious effects of OT on neural responses as reported in numerous studies, other peptides have received less attention. Therefore, we will only briefly summarize evidence of OT effects on human functional magnetic resonance imaging (fMRI) and primarily focus on OT's sister neuropeptide arginine-vasopressin by presenting our own coordinated-based activation likelihood estimation meta-analysis. In addition, we will recapitulate rather limited data on few other neuropeptides, including pharmacological and genetic fMRI studies. Finally, we will review experiments with external neuropeptide administration to patients afflicted with mental disorders, such as autism or schizophrenia. In conclusion, despite remaining uncertainty regarding the penetrance of exogenous neuropeptides through the blood-brain barrier, it is evident that neuropeptides simultaneously influence the activity of limbic and cortical areas, indicating that these systems have a good potential for therapeutic drug development. Hence, this calls for further systematic studies of a wide spectrum of known and less known neuropeptides to understand their normal function in the brain and, subsequently, to tackle their potential contribution for pathophysiological mechanisms of mental disorders.


Asunto(s)
Encéfalo/fisiología , Imagenología Tridimensional , Neuropéptidos/metabolismo , Animales , Humanos
9.
J Neurosci ; 37(50): 12214-12225, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29118105

RESUMEN

Neuropeptides, such as neuropeptide S (NPS) and oxytocin (OXT), represent potential options for the treatment of anxiety disorders due to their potent anxiolytic profile. In this study, we aimed to reveal the mechanisms underlying the behavioral action of NPS, and present a chain of evidence that the effects of NPS within the hypothalamic paraventricular nucleus (PVN) are mediated via actions on local OXT neurons in male Wistar rats. First, retrograde studies identified NPS fibers originating in the brainstem locus coeruleus, and projecting to the PVN. FACS identified prominent NPS receptor expression in PVN-OXT neurons. Using genetically encoded calcium indicators, we further demonstrated that NPS reliably induces a transient increase in intracellular Ca2+ concentration in a subpopulation of OXT neurons, an effect mediated by NPS receptor. In addition, intracerebroventricular (i.c.v.) NPS evoked a significant somatodendritic release of OXT within the PVN as assessed by microdialysis in combination with a highly sensitive radioimmunoassay. Finally, we could show that the anxiolytic effect of NPS seen after i.c.v. or intra-PVN infusion requires responsive OXT neurons of the PVN and locally released OXT. Thus, pharmacological blockade of OXT receptors as well as chemogenetic silencing of OXT neurons within the PVN prevented the effect of synthetic NPS. In conclusion, our results indicate a significant role of the OXT system in mediating the effects of NPS on anxiety, and fill an important gap in our understanding of brain neuropeptide interactions in the context of regulation of emotional behavior within the hypothalamus.SIGNIFICANCE STATEMENT Given the rising scientific interest in neuropeptide research in the context of emotional and stress-related behaviors, our findings demonstrate a novel intrahypothalamic mechanism involving paraventricular oxytocin neurons that express the neuropeptide S receptor. These neurons respond with transient Ca2+ increase and somatodendritic oxytocin release following neuropeptide S stimulation. Thereby, oxytocin neurons seem essential for neuropeptide S-induced anxiolysis, as this effect was blocked by pharmacological and chemogenetic inhibition of the oxytocin system.


Asunto(s)
Ansiedad/fisiopatología , Neuropéptidos/fisiología , Oxitocina/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Receptores de Oxitocina/fisiología , Animales , Transporte Axonal , Proteínas Bacterianas/análisis , Señalización del Calcio/fisiología , Dependovirus/genética , Conducta Exploratoria/efectos de los fármacos , Genes Reporteros , Vectores Genéticos , Proteínas Luminiscentes/análisis , Masculino , Microdiálisis , Actividad Motora/efectos de los fármacos , Neuropéptidos/farmacología , Oxitocina/agonistas , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de Neuropéptido/efectos de los fármacos , Receptores de Neuropéptido/fisiología , Receptores de Oxitocina/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Proteína Fluorescente Roja
10.
J Physiol ; 595(11): 3497-3514, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28402052

RESUMEN

KEY POINTS: A subpopulation of retinal ganglion cells expresses the neuropeptide vasopressin. These retinal ganglion cells project predominately to our biological clock, the suprachiasmatic nucleus (SCN). Light-induced vasopressin release enhances the responses of SCN neurons to light. It also enhances expression of genes involved in photo-entrainment of biological rhythms. ABSTRACT: In all animals, the transition between night and day engages a host of physiological and behavioural rhythms. These rhythms depend not on the rods and cones of the retina, but on retinal ganglion cells (RGCs) that detect the ambient light level in the environment. These project to the suprachiasmatic nucleus (SCN) of the hypothalamus to entrain circadian rhythms that are generated within the SCN. The neuropeptide vasopressin has an important role in this entrainment. Many SCN neurons express vasopressin, and it has been assumed that the role of vasopressin in the SCN reflects the activity of these cells. Here we show that vasopressin is also expressed in many retinal cells that project to the SCN. Light-evoked vasopressin release contributes to the responses of SCN neurons to light, and enhances expression of the immediate early gene c-fos in the SCN, which is involved in photic entrainment of circadian rhythms.


Asunto(s)
Luz , Células Ganglionares de la Retina/metabolismo , Núcleo Supraquiasmático/metabolismo , Vasopresinas/metabolismo , Animales , Ritmo Circadiano , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de la radiación , Núcleo Supraquiasmático/fisiología
11.
Eur J Neurosci ; 44(11): 2885-2898, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27717106

RESUMEN

The hypothalamic neuropeptide oxytocin (OT) controls childbirth and lactation, is involved in social behaviors, plays a role in various psychiatric disorders, and has effects on learning and memory. Although behavioral effects of OT have been extensively studied, much less is known about its effects on neuronal and network activity patterns. Here, we investigate the effect of OT on two major patterns of hippocampal network activity in mouse hippocampal slices. We studied different in vitro models of gamma-frequency oscillations and sharp wave-ripple complexes (SPW-R), two patterns implicated in spatial memory formation and memory consolidation respectively. Strikingly, we found a profound difference of OT on these distinct, mutually exclusive activity patterns. While gamma oscillations where not affected by the activation of hippocampal OT receptors, SPW-R were potently and rapidly suppressed. Interestingly, the temporal precision of oscillation-coupled spikes was enhanced at the same time. Thus, OT exerts strongly different modulatory effects on different network patterns, most likely by inhibition of different sets of inhibitory interneurons. The observed dichotomy between gamma and SPW-R oscillations may have profound effects on the behavioral and cognitive effects of OT which are relevant to cognitive processes and to psychiatric diseases.


Asunto(s)
Ritmo Gamma , Hipocampo/fisiología , Oxitocina/farmacología , Animales , Potenciales Evocados , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Oxitocina/metabolismo , Memoria Espacial
12.
J Neurosci ; 34(32): 10659-74, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25100599

RESUMEN

The role of neuronal noncoding RNAs in energy control of the body is not fully understood. The arcuate nucleus (ARC) of the hypothalamus comprises neurons regulating food intake and body weight. Here we show that Dicer-dependent loss of microRNAs in these neurons of adult (DicerCKO) mice causes chronic overactivation of the signaling pathways involving phosphatidylinositol-3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) and an imbalance in the levels of neuropeptides, resulting in severe hyperphagic obesity. Similarly, the activation of PI3K-Akt-mTOR pathway due to Pten deletion in the adult forebrain leads to comparable weight increase. Conversely, the mTORC1 inhibitor rapamycin normalizes obesity in mice with an inactivated Dicer1 or Pten gene. Importantly, the continuous delivery of oligonucleotides mimicking microRNAs, which are predicted to target PI3K-Akt-mTOR pathway components, to the hypothalamus attenuates adiposity in DicerCKO mice. Furthermore, loss of miR-103 causes strong upregulation of the PI3K-Akt-mTOR pathway in vitro and its application into the ARC of the Dicer-deficient mice both reverses upregulation of Pik3cg, the mRNA encoding the catalytic subunit p110γ of the PI3K complex, and attenuates the hyperphagic obesity. Our data demonstrate in vivo the crucial role of neuronal microRNAs in the control of energy homeostasis.


Asunto(s)
Hiperfagia/complicaciones , Hipotálamo/metabolismo , MicroARNs/metabolismo , Obesidad/etiología , Obesidad/patología , Absorciometría de Fotón , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , ARN Helicasas DEAD-box/deficiencia , ARN Helicasas DEAD-box/genética , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Proteína Oncogénica v-akt/metabolismo , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Ribonucleasa III/deficiencia , Ribonucleasa III/genética , Serina-Treonina Quinasas TOR/metabolismo , Transducción Genética
14.
Curr Biol ; 34(8): R320-R322, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38653200

RESUMEN

During social interactions, individuals evaluate relationships with their peers and switch from approach to avoidance, particularly in response to aggressive encounters. A new study in mice investigated the underlying brain mechanisms and identified oxytocin as a key regulator of social avoidance learning.


Asunto(s)
Oxitocina , Animales , Oxitocina/metabolismo , Oxitocina/fisiología , Ratones , Agresión , Reacción de Prevención/fisiología , Conducta Social , Encéfalo/fisiología , Neurociencias , Interacción Social , Humanos
15.
Neurosci Biobehav Rev ; 163: 105734, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38796125

RESUMEN

This review addresses key findings on loneliness from the social, neurobiological and clinical fields. From a translational perspective, results from studies in humans and animals are included, with a focus on social interaction, mental and physical illness and the role of oxytocin in loneliness. In terms of social interactions, lonely individuals tend to exhibit a range of abnormal behaviors based on dysfunctional social cognitions that make it difficult for them to form meaningful relationships. Neurobiologically, a link has been established between loneliness and the hypothalamic peptide hormone oxytocin. Since social interactions and especially social touch regulate oxytocin signaling, lonely individuals may have an oxytocin imbalance, which in turn affects their health and well-being. Clinically, loneliness is a predictor of physical and mental illness and leads to increased morbidity and mortality. There is evidence that psychopathology is both a cause and a consequence of loneliness. The final section of this review summarizes the findings from social, neurobiological and clinical perspectives to present a new model of the complex construct of loneliness.


Asunto(s)
Soledad , Oxitocina , Interacción Social , Investigación Biomédica Traslacional , Humanos , Soledad/psicología , Oxitocina/metabolismo , Oxitocina/fisiología , Animales , Trastornos Mentales/fisiopatología , Trastornos Mentales/psicología , Neurociencias
16.
Nat Commun ; 15(1): 6274, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054324

RESUMEN

Social recognition is essential for the formation of social structures. Many times, recognition comes with lesser exploration of familiar animals. This lesser exploration has led to the assumption that recognition may be a habituation memory. The underlying memory mechanisms and the thereby acquired cortical representations of familiar mice have remained largely unknown, however. Here, we introduce an approach directly examining the recognition process from volatile body odors among male mice. We show that volatile body odors emitted by mice are sufficient to identify individuals and that more salience is assigned to familiar mice. Familiarity is encoded by reinforced population responses in two olfactory cortex hubs and communicated to other brain regions. The underlying oxytocin-induced plasticity promotes the separation of the cortical representations of familiar from other mice. In summary, neuronal encoding of familiar animals is distinct and utilizes the cortical representational space more broadly, promoting storage of complex social relationships.


Asunto(s)
Cognición , Odorantes , Oxitocina , Reconocimiento en Psicología , Animales , Oxitocina/farmacología , Oxitocina/metabolismo , Masculino , Ratones , Reconocimiento en Psicología/fisiología , Reconocimiento en Psicología/efectos de los fármacos , Cognición/efectos de los fármacos , Cognición/fisiología , Ratones Endogámicos C57BL , Corteza Olfatoria/fisiología , Conducta Social , Plasticidad Neuronal/efectos de los fármacos , Olfato/fisiología , Olfato/efectos de los fármacos , Memoria/efectos de los fármacos , Memoria/fisiología , Conducta Animal/efectos de los fármacos
17.
Artículo en Inglés | MEDLINE | ID: mdl-37697074

RESUMEN

The hypothalamic neuropeptide oxytocin (OT) is well known for its prosocial, anxiolytic, and ameliorating effects on various psychiatric conditions, including alcohol use disorder (AUD). In this chapter, we will first introduce the basic neurophysiology of the OT system and its interaction with other neuromodulatory and neurotransmitter systems in the brain. Next, we provide an overview over the current state of research examining the effects of acute and chronic alcohol exposure on the OT system as well as the effects of OT system manipulation on alcohol-related behaviors in rodents and humans. In rodent models of AUD, OT has been repeatedly shown to reduce ethanol consumption, particularly in models of acute alcohol exposure. In humans however, the results of OT administration on alcohol-related behaviors are promising but not yet conclusive. Therefore, we further discuss several physiological and methodological limitations to the effective application of OT in the clinic and how they may be mitigated by the application of synthetic OT receptor (OTR) agonists. Finally, we discuss the potential efficacy of cutting-edge pharmacology and gene therapies designed to specifically enhance endogenous OT release and thereby rescue deficient expression of OT in the brains of patients with severe forms of AUD and other incurable mental disorders.

18.
J Clin Med ; 12(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36983333

RESUMEN

Self-reported pain levels have been associated with increased stress levels during the COVID-19 pandemic. Less is known about the long-term effects of stress on individuals' physical and emotional pain levels and their associations with the neuropeptide hormone oxytocin. We aimed to predict momentary pain through individual stress levels and momentary oxytocin levels at genuinely high-stress phases, namely during COVID-related lockdowns. In a cross-sectional (n = 254) and a longitudinal (n = 196) assessment during lockdowns in Germany, participants completed a 2-day ecological momentary assessment (EMA) protocol (collecting six saliva samples on two consecutive days each and simultaneously reporting on stress, physical, and emotional pain levels) in 2020, as well as one year later, in 2021. Hierarchical linear modeling revealed significant positive associations between individuals' stress levels and physical pain, both cross-sectionally (b = 0.017; t(103) = 3.345; p = 0.001) and longitudinally (b = 0.009; t(110) = 2.025; p = 0.045). Similarly, subjective stress ratings showed significant positive associations with emotional pain on a within-person (b = 0.014; t(63) = 3.594; p < 0.001) as well as on a between-person (b = 0.026; t(122) = 5.191; p < 0.001) level. Participants further displayed significantly lower salivary oxytocin when experiencing higher levels of emotional pain (b = -0.120; t(163) = -2.493; p = 0.014). In addition, high-stress levels significantly moderated the association between physical pain and salivary oxytocin (b = -0.012; t(32) = -2.150; p = 0.039). Based on mechanistic and experimental research, oxytocinergic mechanisms have long been suggested to modulate pain experiences, however, this has not yet been investigated in everyday life. Our data, which was collected from a large sample experiencing continued stress, in this case, during the COVID-19 pandemic, suggests that individuals experience more intense physical pain and elevated stress levels, as shown by particularly low salivary oxytocin concentrations.

19.
bioRxiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38045233

RESUMEN

Aims: Heart failure (HF) patients often suffer from cognitive decline, depression, and mood impairments, but the molecular signals and brain circuits underlying these effects remain elusive. The hypothalamic neuropeptide oxytocin (OT) is critically involved in the regulation of mood, and OTergic signaling in the central amygdala (CeA) is a key mechanism controlling emotional responses including anxiety-like behaviors. Based on this, we used in this study a well-established ischemic rat HF model and aimed to study alterations in the hypothalamus-to-CeA OTergic circuit. Methods and Results: To study potential HF-induced changes in the hypothalamus-to-CeA OTertic circuit, we combined patch-clamp electrophysiology, immunohistochemical analysis, RNAScope assessment of OTR mRNA, brain region-specific stereotaxic injections of viral vectors and retrograde tracing, optogenetic stimulation and OT biosensors in the ischemic HF model. We found that most of OTergic innervation of the central amygdala (CeA) originated from the hypothalamic supraoptic nucleus (SON). While no differences in the numbers of SON→CeA OTertic neurons (or their OT content) was observed between sham and HF rats, we did observe a blunted content and release of OT from axonal terminals within the CeA. Moreover, we report downregulation of neuronal and astrocytic OT receptors, and impaired OTR-driven GABAergic synaptic activity within the CeA microcircuit of rats with HF. Conclusions: Our study provides first evidence that HF rats display various perturbations in the hypothalamus-to-amygdala OTergic circuit, and lays the foundation for future translational studies targeting either the OT system or GABAergic amygdala GABA microcircuit to ameliorate depression or mood impairments in rats or patients with chronic HF.

20.
Nat Biotechnol ; 41(7): 944-957, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36593404

RESUMEN

Oxytocin (OT), a peptide hormone and neuromodulator, is involved in diverse physiological and pathophysiological processes in the central nervous system and the periphery. However, the regulation and functional sequences of spatial OT release in the brain remain poorly understood. We describe a genetically encoded G-protein-coupled receptor activation-based (GRAB) OT sensor called GRABOT1.0. In contrast to previous methods, GRABOT1.0 enables imaging of OT release ex vivo and in vivo with suitable sensitivity, specificity and spatiotemporal resolution. Using this sensor, we visualize stimulation-induced OT release from specific neuronal compartments in mouse brain slices and discover that N-type calcium channels predominantly mediate axonal OT release, whereas L-type calcium channels mediate somatodendritic OT release. We identify differences in the fusion machinery of OT release for axon terminals versus somata and dendrites. Finally, we measure OT dynamics in various brain regions in mice during male courtship behavior. Thus, GRABOT1.0 provides insights into the role of compartmental OT release in physiological and behavioral functions.


Asunto(s)
Neuronas , Oxitocina , Masculino , Ratones , Animales , Oxitocina/genética , Encéfalo , Transducción de Señal , Sistema Nervioso Central
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA