Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 107128, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432635

RESUMEN

Both POLG and MGME1 are needed for mitochondrial DNA (mtDNA) maintenance in animal cells. POLG, the primary replicative polymerase of the mitochondria, has an exonuclease activity (3'→5') that corrects for the misincorporation of bases. MGME1 serves as an exonuclease (5'→3'), producing ligatable DNA ends. Although both have a critical role in mtDNA replication and elimination of linear fragments, these mechanisms are still not fully understood. Using digital PCR to evaluate and compare mtDNA integrity, we show that Mgme1 knock out (Mgme1 KK) tissue mtDNA is more fragmented than POLG exonuclease-deficient "Mutator" (Polg MM) or WT tissue. In addition, next generation sequencing of mutant hearts showed abundant duplications in/nearby the D-loop region and unique 100 bp duplications evenly spaced throughout the genome only in Mgme1 KK hearts. However, despite these unique mtDNA features at steady-state, we observed a similar delay in the degradation of mtDNA after an induced double strand DNA break in both Mgme1 KK and Polg MM models. Lastly, we characterized double mutant (Polg MM/Mgme1 KK) cells and show that mtDNA cannot be maintained without at least one of these enzymatic activities. We propose a model for the generation of these genomic abnormalities which suggests a role for MGME1 outside of nascent mtDNA end ligation. Our results highlight the role of MGME1 in and outside of the D-loop region during replication, support the involvement of MGME1 in dsDNA degradation, and demonstrate that POLG EXO and MGME1 can partially compensate for each other in maintaining mtDNA.


Asunto(s)
ADN Polimerasa gamma , ADN Mitocondrial , Animales , Ratones , ADN Polimerasa gamma/metabolismo , ADN Polimerasa gamma/genética , Replicación del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Ratones Noqueados
2.
Ann Neurol ; 95(4): 625-634, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180638

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder and one of the leading causes of disability worldwide. The apolipoprotein E4 gene (APOE4) is the strongest genetic risk factor for AD. In 2023, the APOE4 National Institute on Aging/Alzheimer's Disease Sequencing Project working group came together to gather data and discuss the question of whether to reduce or increase APOE4 as a therapeutic intervention for AD. It was the unanimous consensus that cumulative data from multiple studies in humans and animal models support that lowering APOE4 should be a target for therapeutic approaches for APOE4 carriers. ANN NEUROL 2024;95:625-634.


Asunto(s)
Enfermedad de Alzheimer , Animales , Estados Unidos , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/tratamiento farmacológico , Apolipoproteína E4/genética , Objetivos , National Institute on Aging (U.S.)
3.
PLoS Genet ; 18(7): e1009977, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35788729

RESUMEN

African descent populations have a lower Alzheimer disease risk from ApoE ε4 compared to other populations. Ancestry analysis showed that the difference in risk between African and European populations lies in the ancestral genomic background surrounding the ApoE locus (local ancestry). Identifying the mechanism(s) of this protection could lead to greater insight into the etiology of Alzheimer disease and more personalized therapeutic intervention. Our objective is to follow up the local ancestry finding and identify the genetic variants that drive this risk difference and result in a lower risk for developing Alzheimer disease in African ancestry populations. We performed association analyses using a logistic regression model with the ApoE ε4 allele as an interaction term and adjusted for genome-wide ancestry, age, and sex. Discovery analysis included imputed SNP data of 1,850 Alzheimer disease and 4,331 cognitively intact African American individuals. We performed replication analyses on 63 whole genome sequenced Alzheimer disease and 648 cognitively intact Ibadan individuals. Additionally, we reproduced results using whole-genome sequencing of 273 Alzheimer disease and 275 cognitively intact admixed Puerto Rican individuals. A further comparison was done with SNP imputation from an additional 8,463 Alzheimer disease and 11,365 cognitively intact non-Hispanic White individuals. We identified a significant interaction between the ApoE ε4 allele and the SNP rs10423769_A allele, (ß = -0.54,SE = 0.12,p-value = 7.50x10-6) in the discovery data set, and replicated this finding in Ibadan (ß = -1.32,SE = 0.52,p-value = 1.15x10-2) and Puerto Rican (ß = -1.27,SE = 0.64,p-value = 4.91x10-2) individuals. The non-Hispanic Whites analyses showed an interaction trending in the "protective" direction but failing to pass a 0.05 significance threshold (ß = -1.51,SE = 0.84,p-value = 7.26x10-2). The presence of the rs10423769_A allele reduces the odds ratio for Alzheimer disease risk from 7.2 for ApoE ε4/ε4 carriers lacking the A allele to 2.1 for ApoE ε4/ε4 carriers with at least one A allele. This locus is located approximately 2 mB upstream of the ApoE locus, in a large cluster of pregnancy specific beta-1 glycoproteins on chromosome 19 and lies within a long noncoding RNA, ENSG00000282943. This study identified a new African-ancestry specific locus that reduces the risk effect of ApoE ε4 for developing Alzheimer disease. The mechanism of the interaction with ApoEε4 is not known but suggests a novel mechanism for reducing the risk for ε4 carriers opening the possibility for potential ancestry-specific therapeutic intervention.


Asunto(s)
Enfermedad de Alzheimer , Alelos , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genotipo , Humanos , Nigeria , Factores de Riesgo
4.
Hum Mol Genet ; 31(17): 2876-2886, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35383839

RESUMEN

Most Alzheimer's disease (AD)-associated genetic variants do not change protein coding sequence and thus likely exert their effects through regulatory mechanisms. RNA editing, the post-transcriptional modification of RNA bases, is a regulatory feature that is altered in AD patients that differs across ancestral backgrounds. Editing QTLs (edQTLs) are DNA variants that influence the level of RNA editing at a specific site. To study the relationship of DNA variants genome-wide, and particularly in AD-associated loci, with RNA editing, we performed edQTL analyses in self-reported individuals of African American (AF) or White (EU) race with corresponding global genetic ancestry averaging 82.2% African ancestry (AF) and 96.8% European global ancestry (EU) in the two groups, respectively. We used whole-genome genotyping array and RNA sequencing data from peripheral blood of 216 AD cases and 212 age-matched, cognitively intact controls. We identified 2144 edQTLs in AF and 3579 in EU, of which 1236 were found in both groups. Among these, edQTLs in linkage disequilibrium (r2 > 0.5) with AD-associated genetic variants in the SORL1, SPI1 and HLA-DRB1 loci were associated with sites that were differentially edited between AD cases and controls. While there is some shared RNA editing regulatory architecture, most edQTLs had distinct effects on the rate of RNA editing in different ancestral populations suggesting a complex architecture of RNA editing regulation. Altered RNA editing may be one possible mechanism for the functional effect of AD-associated variants and may contribute to observed differences in the genetic etiology of AD between ancestries.


Asunto(s)
Enfermedad de Alzheimer , Edición de ARN , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Población Negra , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Proteínas Relacionadas con Receptor de LDL/metabolismo , Desequilibrio de Ligamiento , Proteínas de Transporte de Membrana/genética , Sitios de Carácter Cuantitativo/genética , Edición de ARN/genética
5.
Blood ; 140(5): 491-503, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35476848

RESUMEN

CD19-directed chimeric antigen receptor (CAR-19) T cells are groundbreaking immunotherapies approved for use against large B-cell lymphomas. Although host inflammatory and tumor microenvironmental markers associate with efficacy and resistance, the tumor-intrinsic alterations underlying these phenomena remain undefined. CD19 mutations associate with resistance but are uncommon, and most patients with relapsed disease retain expression of the wild-type receptor, implicating other genomic mechanisms. We therefore leveraged the comprehensive resolution of whole-genome sequencing to assess 51 tumor samples from 49 patients with CAR-19-treated large B-cell lymphoma. We found that the pretreatment presence of complex structural variants, APOBEC mutational signatures, and genomic damage from reactive oxygen species predict CAR-19 resistance. In addition, the recurrent 3p21.31 chromosomal deletion containing the RHOA tumor suppressor was strongly enriched in patients for whom CAR T-cell therapy failed. Pretreatment reduced expression or monoallelic loss of CD19 did not affect responses, suggesting CAR-19 therapy success and resistance are related to multiple mechanisms. Our study showed that tumor-intrinsic genomic alterations are key among the complex interplay of factors that underlie CAR-19 efficacy and resistance for large B-cell lymphomas.


Asunto(s)
Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Antígenos CD19 , Genómica , Humanos , Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/terapia , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T , Insuficiencia del Tratamiento
6.
J Stroke Cerebrovasc Dis ; 33(5): 107518, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492543

RESUMEN

INTRODUCTION: Stroke embolic source have an unknown origin in 30-40% of cases. Mechanical thrombectomy for acute large vessel occlusion stroke has provided us with a method to directly retrieve the thrombi from patients for analysis. By collecting stroke-causing thrombi from known sources, we can then use high-throughput RNA sequencing (RNAseq) technology to directly measure the gene expression signatures of these clots. This may allow us to identify genetic markers to predict the cause of cryptogenic embolism. METHODS: This is a prospective study in which RNAseq was used to analyze cerebral thrombi retrieved by mechanical thrombectomy devices in acute ischemic stroke patients. Samples were separated into two groups based on known stroke thrombus etiology, including Carotid group (patients with ipsilateral >70% carotid stenosis) and Atrial fibrillation (AF) group (patients with atrial fibrillation). Gene expression was compared by RNAseq analysis between the groups. RESULTS: From October 2016 to September 2017, 8 thrombi (4 in Carotid group, 4 in Afib group) were included in this study. There were 131 genes that were significantly up- or down-regulated between the two groups defined as a false discovery rate ≤ 0.05 and a fold change ≥ 2. Twenty-six genes were selected as candidate gene biomarkers based on the criteria in the methods section. Candidate genes HSPA1B, which encodes a heatshock protein, and GPRC5B, which encodes a G-protein, showed the greatest fold differences in expression between the two groups. CONCLUSION: This study has shown that RNA sequencing of acute ischemic stroke thrombi is feasible and indentified potential novel biomarkers for identifying stroke-causing thrombi origin, especially in cryptogenic stroke.


Asunto(s)
Fibrilación Atrial , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Trombosis , Humanos , Proyectos Piloto , Trombosis/complicaciones , Fibrilación Atrial/complicaciones , Estudios Prospectivos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/complicaciones , Trombectomía/efectos adversos , Biomarcadores , Análisis de Secuencia de ARN , Expresión Génica , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/genética , Receptores Acoplados a Proteínas G
7.
Arterioscler Thromb Vasc Biol ; 42(2): 175-188, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34879707

RESUMEN

OBJECTIVE: Monocytes, which play an important role in arteriogenesis, can build immunologic memory by a functional reprogramming that modifies their response to a second challenge. This process, called trained immunity, is evoked by insults that shift monocyte metabolism, increasing HIF (hypoxia-inducible factor)-1α levels. Since ischemia enhances HIF-1α, we evaluate whether ischemia can lead to a functional reprogramming of monocytes, which would contribute to arteriogenesis after hindlimb ischemia. METHODS AND RESULTS: Mice exposed to ischemia by 24 hours (24h) of femoral artery occlusion (24h trained) or sham were subjected to hindlimb ischemia one week later; the 24h trained mice showed significant improvement in blood flow recovery and arteriogenesis after hindlimb ischemia. Adoptive transfer using bone marrow-derived monocytes (BM-Mono) from 24h trained or sham donor mice, demonstrated that recipients subjected to hindlimb ischemia who received 24h ischemic-trained monocytes had remarkable blood flow recovery and arteriogenesis. Further, ischemic-trained BM-Mono had increased HIF-1α and GLUT-1 (glucose transporter-1) gene expression during femoral artery occlusion. Circulating cytokines and GLUT-1 were also upregulated during femoral artery occlusion.Transcriptomic analysis and confirmatory qPCR performed in 24h trained and sham BM-Mono revealed that among the 15 top differentially expressed genes, 4 were involved in lipid metabolism in the ischemic-trained monocytes. Lipidomic analysis confirmed that ischemia training altered the cholesterol metabolism of these monocytes. Further, several histone-modifying epigenetic enzymes measured by qPCR were altered in mouse BM-Mono exposed to 24h hypoxia. CONCLUSIONS: Ischemia training in BM-Mono leads to a unique gene profile and improves blood flow and arteriogenesis after hindlimb ischemia.


Asunto(s)
Traslado Adoptivo , Miembro Posterior/irrigación sanguínea , Isquemia/terapia , Monocitos/trasplante , Neovascularización Fisiológica , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Miembro Posterior/inmunología , Miembro Posterior/fisiopatología , Isquemia/inmunología , Isquemia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología
8.
Exp Lung Res ; 49(1): 152-164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37584484

RESUMEN

Purpose: Growth hormone-releasing hormone (GHRH) is a 44-amino acid peptide that regulates growth hormone (GH) secretion. We hypothesized that GHRH receptor (GHRH-R) in alveolar type 2 (AT2) cells could modulate pro-inflammatory and possibly subsequent pro-fibrotic effects of lipopolysaccharide (LPS) or cytokines, such that AT2 cells could participate in lung inflammation and fibrosis. Methods: We used human alveolar type 2 (iAT2) epithelial cells derived from induced pluripotent stem cells (iPSC) to investigate how GHRH-R modulates gene and protein expression. We tested iAT2 cells' gene expression in response to LPS or cytokines, seeking whether these mechanisms caused endogenous production of pro-inflammatory molecules or mesenchymal markers. Quantitative real-time PCR (RT-PCR) and Western blotting were used to investigate differential expression of epithelial and mesenchymal markers. Result: Incubation of iAT2 cells with LPS increased expression of IL1-ß and TNF-α in addition to mesenchymal genes, including ACTA2, FN1 and COL1A1. Alveolar epithelial cell gene expression due to LPS was significantly inhibited by GHRH-R peptide antagonist MIA-602. Incubation of iAT2 cells with cytokines like those in fibrotic lungs similarly increased expression of genes for IL1-ß, TNF-α, TGFß-1, Wnt5a, smooth muscle actin, fibronectin and collagen. Expression of mesenchymal proteins, such as N-cadherin and vimentin, were also elevated after prolonged exposure to cytokines, confirming epithelial production of pro-inflammatory molecules as an important mechanism that might lead to subsequent fibrosis. Conclusion: iAT2 cells clearly expressed the GHRH-R. Exposure to LPS or cytokines increased iAT2 cell production of pro-inflammatory factors. GHRH-R antagonist MIA-602 inhibited pro-inflammatory gene expression, implicating iAT2 cell GHRH-R signaling in lung inflammation and potentially in fibrosis.


Asunto(s)
Neumonía , Fibrosis Pulmonar , Humanos , Células Epiteliales Alveolares/metabolismo , Factor de Necrosis Tumoral alfa , Lipopolisacáridos/farmacología , Hormona Liberadora de Hormona del Crecimiento/genética , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Inflamación , Citocinas
9.
Alzheimers Dement ; 19(9): 3902-3915, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37037656

RESUMEN

INTRODUCTION: European local ancestry (ELA) surrounding apolipoprotein E (APOE) ε4 confers higher risk for Alzheimer's disease (AD) compared to African local ancestry (ALA). We demonstrated significantly higher APOE ε4  expression in ELA versus ALA in AD brains from APOE ε4/ε4 carriers. Chromatin accessibility differences could contribute to these expression changes. METHODS: We performed single nuclei assays for transposase accessible chromatin sequencing from the frontal cortex of six ALA and six ELA AD brains, homozygous for local ancestry and APOE ε4. RESULTS: Our results showed an increased chromatin accessibility at the APOE ε4  promoter area in ELA versus ALA astrocytes. This increased accessibility in ELA astrocytes extended genome wide. Genes with increased accessibility in ELA in astrocytes were enriched for synapsis, cholesterol processing, and astrocyte reactivity. DISCUSSION: Our results suggest that increased chromatin accessibility of APOE ε4  in ELA astrocytes contributes to the observed elevated APOE ε4  expression, corresponding to the increased AD risk in ELA versus ALA APOE ε4/ε4 carriers.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Humanos , Apolipoproteína E4/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/complicaciones , Cromatina , Heterocigoto , Expresión Génica
10.
Alzheimers Dement ; 19(11): 4886-4895, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37051669

RESUMEN

BACKGROUND: Haptoglobin (HP) is an antioxidant of apolipoprotein E (APOE), and previous reports have shown HP binds with APOE and amyloid beta (Aß) to aid its clearance. A common structural variant of the HP gene distinguishes it into two alleles: HP1 and HP2. METHODS: HP genotypes were imputed in 29 cohorts from the Alzheimer's Disease Genetics Consortium (N = 20,512). Associations between the HP polymorphism and Alzheimer's disease (AD) risk and age of onset through APOE interactions were investigated using regression models. RESULTS: The HP polymorphism significantly impacts AD risk in European-descent individuals (and in meta-analysis with African-descent individuals) by modifying both the protective effect of APOE ε2 and the detrimental effect of APOE ε4. The effect is particularly significant among APOE ε4 carriers. DISCUSSION: The effect modification of APOE by HP suggests adjustment and/or stratification by HP genotype is warranted when APOE risk is considered. Our findings also provided directions for further investigations on potential mechanisms behind this association.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Haptoglobinas/genética , Péptidos beta-Amiloides/genética , Alelos , Apolipoproteínas E/genética , Genotipo
11.
Alzheimers Dement ; 19(6): 2538-2548, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36539198

RESUMEN

BACKGROUND: This study used admixture mapping to prioritize the genetic regions associated with Alzheimer's disease (AD) in African American (AA) individuals, followed by ancestry-aware regression analysis to fine-map the prioritized regions. METHODS: We analyzed 10,271 individuals from 17 different AA datasets. We performed admixture mapping and meta-analyzed the results. We then used regression analysis, adjusting for local ancestry main effects and interactions with genotype, to refine the regions identified from admixture mapping. Finally, we leveraged in silico annotation and differential gene expression data to prioritize AD-related variants and genes. RESULTS: Admixture mapping identified two genome-wide significant loci on chromosomes 17p13.2 (p = 2.2 × 10-5 ) and 18q21.33 (p = 1.2 × 10-5 ). Our fine mapping of the chromosome 17p13.2 and 18q21.33 regions revealed several interesting genes such as the MINK1, KIF1C, and BCL2. DISCUSSION: Our ancestry-aware regression approach showed that AA individuals have a lower risk of AD if they inherited African ancestry admixture block at the 17p13.2 locus. HIGHLIGHTS: We identified two genome-wide significant admixture mapping signals: on chromosomes 17p13.2 and 18q21.33, which are novel in African American (AA) populations. Our ancestry-aware regression approach showed that AA individuals have a lower risk of Alzheimer's disease (AD) if they inherited African ancestry admixture block at the 17p13.2 locus. We found that the overall proportion of African ancestry does not differ between the cases and controls that suggest African genetic ancestry alone is not likely to explain the AD prevalence difference between AA and non-Hispanic White populations.


Asunto(s)
Enfermedad de Alzheimer , Predisposición Genética a la Enfermedad , Humanos , Predisposición Genética a la Enfermedad/genética , Negro o Afroamericano/genética , Enfermedad de Alzheimer/genética , Mapeo Cromosómico/métodos , Genotipo , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Cinesinas/genética , Proteínas Serina-Treonina Quinasas/genética
12.
Hum Mol Genet ; 28(18): 3053-3061, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31162550

RESUMEN

Little is known about the post-transcriptional mechanisms that modulate the genetic effects in the molecular pathways underlying Alzheimer disease (AD), and even less is known about how these changes might differ across diverse populations. RNA editing, the process that alters individual bases of RNA, may contribute to AD pathogenesis due to its roles in neuronal development and immune regulation. Here, we pursued one of the first transcriptome-wide RNA editing studies in AD by examining RNA sequencing data from individuals of both African-American (AA) and non-Hispanic White (NHW) ethnicities. Whole transcriptome RNA sequencing and RNA editing analysis were performed on peripheral blood specimens from 216 AD cases (105 AA, 111 NHW) and 212 gender matched controls (105 AA, 107 NHW). 449 positions in 254 genes and 723 positions in 371 genes were differentially edited in AA and NHW, respectively. While most differentially edited sites localized to different genes in AA and NHW populations, these events converged on the same pathways across both ethnicities, especially endocytic and inflammatory response pathways. Furthermore, these differentially edited sites were preferentially predicted to disrupt miRNA binding and induce nonsynonymous coding changes in genes previously associated with AD in molecular studies, including PAFAH1B2 and HNRNPA1. These findings suggest RNA editing is an important post-transcriptional regulatory program in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Edición de ARN , Transducción de Señal , Alelos , Enfermedad de Alzheimer/patología , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Anotación de Secuencia Molecular , Transcriptoma
13.
Am J Transplant ; 21(11): 3524-3537, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34008325

RESUMEN

Mesenchymal stem cells (MSC) have been shown to be immunomodulatory, tissue regenerative, and graft promoting; however, several questions remain with regard to ideal MSC source and timing of administration. In this study, we utilized a rigorous preclinical model of allogeneic islet cell transplantation, incorporating reduced immune suppression and near to complete mismatch of major histocompatibility antigens between the diabetic cynomolgus monkey recipient and the islet donor, to evaluate both the graft promoting impact of MSC source, that is, derived from the islet recipient, the islet donor or an unrelated third party as well as the impact of timing. Co-transplant of MSC and islets on post-operative day 0, followed by additional IV MSC infusions in the first posttransplant month, resulted in prolongation of rejection free and overall islet survival and superior metabolic control for animals treated with recipient as compared to donor or third-party MSC. Immunological analyses demonstrated that infusion of MSC from either source did not prevent alloantibody formation to the islet or MSC donor; however, treatment with recipient MSC resulted in significant downregulation of memory T cells, decreased anti-donor T cell proliferation, and a trend toward increased Tregulatory:Tconventional ratios.


Asunto(s)
Trasplante de Islotes Pancreáticos , Células Madre Mesenquimatosas , Aloinjertos , Animales , Macaca fascicularis , Trasplante Homólogo
14.
Nucleic Acids Res ; 47(17): e98, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31291459

RESUMEN

Recent technology has made it possible to measure DNA methylation profiles in a cost-effective and comprehensive genome-wide manner using array-based technology for epigenome-wide association studies. However, identifying differentially methylated regions (DMRs) remains a challenging task because of the complexities in DNA methylation data. Supervised methods typically focus on the regions that contain consecutive highly significantly differentially methylated CpGs in the genome, but may lack power for detecting small but consistent changes when few CpGs pass stringent significance threshold after multiple comparison. Unsupervised methods group CpGs based on genomic annotations first and then test them against phenotype, but may lack specificity because the regional boundaries of methylation are often not well defined. We present coMethDMR, a flexible, powerful, and accurate tool for identifying DMRs. Instead of testing all CpGs within a genomic region, coMethDMR carries out an additional step that selects co-methylated sub-regions first. Next, coMethDMR tests association between methylation levels within the sub-region and phenotype via a random coefficient mixed effects model that models both variations between CpG sites within the region and differential methylation simultaneously. coMethDMR offers well-controlled Type I error rate, improved specificity, focused testing of targeted genomic regions, and is available as an open-source R package.


Asunto(s)
Islas de CpG/genética , Metilación de ADN/genética , Epigénesis Genética , Epigenómica/métodos , Programas Informáticos , Humanos , Modelos Biológicos , Fenotipo
15.
Alzheimers Dement ; 17(7): 1179-1188, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33522086

RESUMEN

INTRODUCTION: Apolipoprotein E (APOE) ε4 confers less risk for Alzheimer's disease (AD) in carriers with African local genomic ancestry (ALA) than APOE ε4 carriers with European local ancestry (ELA). Cell type specific transcriptional variation between the two local ancestries (LAs) could contribute to this disease risk differences. METHODS: Single-nucleus RNA sequencing was performed on frozen frontal cortex of homozygous APOE ε4/ε4 AD patients: seven with ELA, four with ALA. RESULTS: A total of 60,908 nuclei were sequenced. Within the LA region (chr19:44-46Mb), APOE was the gene most differentially expressed, with ELA carriers having significantly more expression (overall P < 1.8E-317 ) in 24 of 32 cell clusters. The transcriptome of one astrocyte cluster, with high APOE ε4 expression and specific to ELA, is suggestive of A1 reactive astrocytes. DISCUSSION: AD patients with ELA expressed significantly greater levels of APOE than ALA APOE ε4 carriers. These differences in APOE expression could contribute to the reduced risk for AD seen in African APOE ε4 carriers.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4/genética , Población Negra/genética , Análisis de Secuencia de ARN , Población Blanca/genética , Anciano , Anciano de 80 o más Años , Alelos , Enfermedad de Alzheimer/etnología , Enfermedad de Alzheimer/genética , Femenino , Heterocigoto , Humanos , Masculino
16.
Curr Sports Med Rep ; 20(11): 617-623, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34752437

RESUMEN

ABSTRACT: The past two decades have built on the successes of the Human Genome Project identifying the impact of genetics and genomics on human traits. Given the importance of exercise in the physical and psychological health of individuals across the lifespan, using genomics to understand the impact of genes in the sports medicine field is an emerging field. Given the complexity of the systems involved, high-throughput genomics is required to understand genetic variants, their functions, and ultimately their effect on the body. Consequently, genomic studies have been performed across several domains of sports medicine with varying degrees of success. While the breadth of these is great, they focus largely on the following three areas: 1) performance; 2) injury susceptibility; and 3) sports associated chronic conditions, such as osteoarthritis. Herein, we review literature on genetics and genomics in sports medicine, offer suggestions to bolster existing studies, and suggest ways to ideally impact clinical care.


Asunto(s)
Medicina Deportiva , Deportes , Ejercicio Físico , Predicción , Genómica , Humanos
17.
Am J Kidney Dis ; 74(1): 73-81, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30826088

RESUMEN

RATIONALE & OBJECTIVE: Improving arteriovenous fistula (AVF) outcomes requires better understanding of the biology underlying maturation or failure. Our current knowledge of maturation relies on extrapolation from other vascular pathologies, which does not incorporate unique aspects of AVF remodeling. This study compares the RNA expression of pre-access (native) veins and AVFs with distinct maturation outcomes. STUDY DESIGN: Case-control study. SETTING & PARTICIPANTS: 64 patients undergoing 2-stage AVF surgeries at a single center. 19 native veins and 19 AVF samples were analyzed using RNA sequencing (RNA-seq). 58 native veins were studied using real-time polymerase chain reaction; 45, using immunohistochemistry; and 19, using Western blot analysis. PREDICTOR: RNA expression in native veins and AVFs. OUTCOME: Anatomic nonmaturation, defined as an AVF that never achieved an internal diameter ≥ 6mm. ANALYTICAL APPROACH: Pre-access native veins and AVF samples were obtained from patients undergoing 2-stage AVF creation. Veins that subsequently matured or failed after access creation were analyzed using RNA-seq to search for genes associated with maturation failure. Genes associated with nonmaturation were confirmed using real-time polymerase chain reaction, immunohistochemistry, and Western blot analysis. In addition, the association between pre-access gene expression and postoperative morphology was evaluated. RNA-seq was also performed on AVFs to search for transcriptional differences between AVFs that matured and those that failed at the time of transposition. RESULTS: Pro-inflammatory genes (CSF3R, FPR1, S100A8, S100A9, and VNN2) were upregulated in pre-access veins that failed (false discovery rate < 0.05), and their expression colocalized to smooth muscle cells. Expression of S100A8 and S100A9 correlated with postoperative intimal hyperplasia and the product of medial fibrosis and intimal hyperplasia (r=0.32-0.38; P < 0.05). AVFs that matured or failed were transcriptionally similar at the time of transposition. LIMITATIONS: Small sample size, analysis of only upper-arm veins and transposed fistulas. CONCLUSIONS: Increased expression of proinflammatory genes in pre-access veins appears to be associated with greater risk for AVF nonmaturation.


Asunto(s)
Derivación Arteriovenosa Quirúrgica , Calgranulina A/genética , Calgranulina B/genética , Diálisis Renal/métodos , Túnica Íntima/patología , Venas , Derivación Arteriovenosa Quirúrgica/efectos adversos , Derivación Arteriovenosa Quirúrgica/métodos , Correlación de Datos , Femenino , Humanos , Hiperplasia , Inmunohistoquímica , Fallo Renal Crónico/terapia , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ARN/métodos , Transcriptoma , Grado de Desobstrucción Vascular , Remodelación Vascular/genética , Venas/metabolismo , Venas/patología , Venas/fisiopatología
18.
Lung ; 197(5): 541-549, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31392398

RESUMEN

PURPOSE: Growth hormone-releasing hormone (GHRH) is a 44-amino acid peptide that regulates growth hormone (GH) secretion. We hypothesized that a GHRH receptor (GHRH-R) antagonist, MIA-602, would inhibit bleomycin-induced lung inflammation and/or fibrosis in C57Bl/6J mice. METHODS: We tested whether MIA-602 (5 µg or vehicle given subcutaneously [SC] on days 1-21) would decrease lung inflammation (at day 14) and/or fibrosis (at day 28) in mice treated with intraperitoneal (IP) bleomycin (0.8 units on days 1, 3, 7, 10, 14, and 21). Bleomycin resulted in inflammation and fibrosis around airways and vessels evident histologically at days 14 and 28. RESULTS: Inflammation (histopathologic scores assessed blindly) was visibly less evident in mice treated with MIA-602 for 14 days. After 28 days, lung hydroxyproline (HP) content increased significantly in mice treated with vehicle; in contrast, lung HP did not increase significantly compared to naïve controls in mice treated with GHRH-R antagonist. GHRH-R antagonist increased basal and maximal oxygen consumption of cultured lung fibroblasts. Multiple genes related to chemotaxis, IL-1, chemokines, regulation of inflammation, and extracellular signal-regulated kinases (ERK) were upregulated in lungs of mice treated with bleomycin and MIA-602. MIA-602 also prominently suppressed multiple genes related to the cellular immune response including those for T-cell differentiation, receptor signaling, activation, and cytokine production. CONCLUSIONS: MIA-602 reduced lung inflammation and fibrosis due to bleomycin. Multiple genes related to immune response and T-cell functions were downregulated, supporting the view that MIA-602 can modulate the cellular immune response to bleomycin lung injury.


Asunto(s)
Bleomicina , Hormona Liberadora de Hormona del Crecimiento/antagonistas & inhibidores , Antagonistas de Hormonas/farmacología , Pulmón/efectos de los fármacos , Neumonía/prevención & control , Fibrosis Pulmonar/prevención & control , Sermorelina/análogos & derivados , Animales , Células Cultivadas , Citoprotección , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hidroxiprolina/metabolismo , Mediadores de Inflamación/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Neumonía/inducido químicamente , Neumonía/metabolismo , Neumonía/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Sermorelina/farmacología , Transducción de Señal
19.
Neurogenetics ; 19(1): 17-26, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29151244

RESUMEN

Alterations of the gamma-aminobutyric acid (GABA) signaling system has been strongly linked to the pathophysiology of autism spectrum disorder (ASD). Genetic associations of common variants in GABA receptor subunits, in particular GABRA4 on chromosome 4p12, with ASD have been replicated by several studies. Moreover, molecular investigations have identified altered transcriptional and translational levels of this gene and protein in brains of ASD individuals. Since the genotyped common variants are likely not the functional variants contributing to the molecular consequences or underlying ASD phenotype, this study aims to examine rare sequence variants in GABRA4, including those outside the protein coding regions of the gene. We comprehensively re-sequenced the entire protein coding and noncoding portions of the gene and putative regulatory sequences in 82 ASD individuals and 55 developmentally typical pediatric controls, all homozygous for the most significant previously associated ASD risk allele (G/G at rs1912960). We identified only a single common, coding variant, and no association of any single marker or set of variants with ASD. Functional annotation of noncoding variants identified several rare variants in putative regulatory sites. Finally, a rare variant unique to ASD cases, in an evolutionary conserved site of the 3'UTR, shows a trend toward decreasing gene expression. Hence, GABRA4 rare variants in noncoding DNA may be variants of modest physiological effects in ASD etiology.


Asunto(s)
Trastorno del Espectro Autista/genética , Receptores de GABA-A/genética , Regiones no Traducidas 3' , Adolescente , Adulto , Alelos , Niño , Preescolar , Cromosomas Humanos Par 4/genética , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Polimorfismo de Nucleótido Simple , Subunidades de Proteína/genética , Población Blanca/genética , Adulto Joven
20.
Hum Mol Genet ; 24(14): 4006-23, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25882707

RESUMEN

Despite significant progress in the genetics of autism spectrum disorder (ASD), how genetic mutations translate to the behavioral changes characteristic of ASD remains largely unknown. ASD affects 1-2% of children and adults, and is characterized by deficits in verbal and non-verbal communication, and social interactions, as well as the presence of repetitive behaviors and/or stereotyped interests. ASD is clinically and etiologically heterogeneous, with a strong genetic component. Here, we present functional data from syngap1 and shank3 zebrafish loss-of-function models of ASD. SYNGAP1, a synaptic Ras GTPase activating protein, and SHANK3, a synaptic scaffolding protein, were chosen because of mounting evidence that haploinsufficiency in these genes is highly penetrant for ASD and intellectual disability (ID). Orthologs of both SYNGAP1 and SHANK3 are duplicated in the zebrafish genome and we find that all four transcripts (syngap1a, syngap1b, shank3a and shank3b) are expressed at the earliest stages of nervous system development with pronounced expression in the larval brain. Consistent with early expression of these genes, knockdown of syngap1b or shank3a cause common embryonic phenotypes including delayed mid- and hindbrain development, disruptions in motor behaviors that manifest as unproductive swim attempts, and spontaneous, seizure-like behaviors. Our findings indicate that both syngap1b and shank3a play novel roles in morphogenesis resulting in common brain and behavioral phenotypes.


Asunto(s)
Trastorno del Espectro Autista/genética , Encéfalo/embriología , Proteínas Activadoras de GTPasa/genética , Proteínas del Tejido Nervioso/genética , Organogénesis/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Proteínas Activadoras de ras GTPasa/genética , Animales , Bases de Datos Genéticas , Desarrollo Embrionario , Proteínas Activadoras de GTPasa/metabolismo , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Haploinsuficiencia , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA