Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 317(4): G373-G386, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31373507

RESUMEN

Although steatosis (fatty liver) is a clinically well-described early stage of alcoholic liver disease, surprisingly little is known about how it promotes hepatotoxicity. We have shown that ethanol consumption leads to microtubule hyperacetylation that can explain ethanol-induced defects in protein trafficking. Because almost all steps of the lipid droplet life cycle are microtubule dependent and because microtubule acetylation promotes adipogenesis, we examined droplet dynamics in ethanol-treated cells. In WIF-B cells treated with ethanol and/or oleic acid (a fatty acid associated with the "Western" diet), we found that ethanol dramatically increased lipid droplet numbers and led to the formation of large, peripherally located droplets. Enhanced droplet formation required alcohol dehydrogenase-mediated ethanol metabolism, and peripheral droplet distributions required intact microtubules. We also determined that ethanol-induced microtubule acetylation led to impaired droplet degradation. Live-cell imaging revealed that droplet motility was microtubule dependent and that droplets were virtually stationary in ethanol-treated cells. To determine more directly whether microtubule hyperacetylation could explain impaired droplet motility, we overexpressed the tubulin-specific acetyltransferase αTAT1 to promote microtubule acetylation in the absence of alcohol. Droplet motility was impaired in αTAT1-expressing cells but to a lesser extent than in ethanol-treated cells. However, in both cases, the large immotile droplets (but not small motile ones) colocalized with dynein and dynactin (but not kinesin), implying that altered droplet-motor microtubule interactions may explain altered dynamics. These studies further suggest that modulating cellular acetylation is a potential strategy for treating alcoholic liver disease.NEW & NOTEWORTHY Chronic alcohol consumption with the "Western diet" enhances the development of fatty liver and leads to impaired droplet motility, which may have serious deletrious effects on hepatocyte function.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Acetilación , Acetiltransferasas/metabolismo , Alcohol Deshidrogenasa/metabolismo , Línea Celular , Complejo Dinactina/metabolismo , Dineínas/metabolismo , Humanos , Proteínas de Microtúbulos/metabolismo , Ácidos Oléicos/farmacología
2.
Am J Physiol Gastrointest Liver Physiol ; 313(6): G558-G569, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28864499

RESUMEN

The liver metabolizes alcohol using alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1). Both enzymes metabolize ethanol into acetaldehyde, but CYP2E1 activity also results in the production of reactive oxygen species (ROS) that promote oxidative stress. We have previously shown that microtubules are hyperacetylated in ethanol-treated polarized, hepatic WIF-B cells and livers from ethanol-fed rats. We have also shown that enhanced protein acetylation correlates with impaired clathrin-mediated endocytosis, constitutive secretion, and nuclear translocation and that the defects are likely mediated by acetaldehyde. However, the roles of CYP2E1-generated metabolites and ROS in microtubule acetylation and these alcohol-induced impairments have not been examined. To determine if CYP2E1-mediated alcohol metabolism is required for enhanced acetylation and the trafficking defects, we coincubated cells with ethanol and diallyl sulfide (DAS; a CYP2E1 inhibitor) or N-acetyl cysteine (NAC; an antioxidant). Both agents failed to prevent microtubule hyperacetylation in ethanol-treated cells and also failed to prevent impaired secretion or clathrin-mediated endocytosis. Somewhat surprisingly, both DAS and NAC prevented impaired STAT5B nuclear translocation. Further examination of microtubule-independent steps of the pathway revealed that Jak2/STAT5B activation by growth hormone was prevented by DAS and NAC. These results were confirmed in ethanol-exposed HepG2 cells expressing only ADH or CYP2E1. Using quantitative RT-PCR, we further determined that ethanol exposure led to blunted growth hormone-mediated gene expression. In conclusion, we determined that alcohol-induced microtubule acetylation and associated defects in microtubule-dependent trafficking are mediated by ADH metabolism whereas impaired microtubule-independent Jak2/STAT5B activation is mediated by CYP2E1 activity.NEW & NOTEWORTHY Impaired growth hormone-mediated signaling is observed in ethanol-exposed hepatocytes and is explained by differential effects of alcohol dehydrogenase (ADH)- and cytochrome P450 2E1 (CYP2E1)-mediated ethanol metabolism on the Jak2/STAT5B pathway.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Etanol/metabolismo , Hormona del Crecimiento/metabolismo , Hígado/enzimología , Acetaldehído/metabolismo , Acetilación , Animales , Antioxidantes/farmacología , Biotransformación , Inhibidores del Citocromo P-450 CYP2E1/farmacología , Endocitosis , Etanol/toxicidad , Hormona del Crecimiento/genética , Células Hep G2 , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Hígado/efectos de los fármacos , Proteínas de Microtúbulos/metabolismo , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Ratas , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Transducción de Señal
3.
J Virol ; 87(9): 4952-64, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23408633

RESUMEN

There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.


Asunto(s)
Ebolavirus/inmunología , Virus de la Encefalitis Equina Venezolana/genética , Fiebre Hemorrágica Ebola/prevención & control , Replicón , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Ebolavirus/genética , Virus de la Encefalitis Equina Venezolana/fisiología , Vectores Genéticos/genética , Vectores Genéticos/fisiología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Macaca fascicularis , Vacunación , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
4.
Mol Cell Biochem ; 397(1-2): 223-33, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25148871

RESUMEN

Alcoholic liver disease has been clinically well described, but the molecular mechanisms leading to hepatotoxicity have not been fully elucidated. Previously, we determined that microtubules are hyperacetylated and more stable in ethanol-treated WIF-B cells, VL-17A cells, liver slices, and in livers from ethanol-fed rats. From our recent studies, we believe that these modifications can explain alcohol-induced defects in microtubule motor-dependent protein trafficking including nuclear translocation of a subset of transcription factors. Since cytoplasmic dynein/dynactin is known to mediate both microtubule-dependent translocation and basolateral to apical/canalicular transcytosis, we predicted that transcytosis is impaired in ethanol-treated hepatic cells. We monitored transcytosis of three classes of newly synthesized canalicular proteins in polarized, hepatic WIF-B cells, an emerging model system for the study of liver disease. As predicted, canalicular delivery of all proteins tested was impaired in ethanol-treated cells. Unlike in control cells, transcytosing proteins were observed in discrete sub-canalicular puncta en route to the canalicular surface that aligned along acetylated microtubules. We further determined that the stalled transcytosing proteins colocalized with dynein/dynactin in treated cells. No changes in vesicle association were observed for either dynein or dynactin in ethanol-treated cells, but significantly enhanced dynein binding to microtubules was observed. From these results, we propose that enhanced dynein binding to microtubules in ethanol-treated cells leads to decreased motor processivity resulting in vesicle stalling and in impaired canalicular delivery. Our studies also importantly indicate that modulating cellular acetylation levels with clinically tolerated deacetylase agonists may be a novel therapeutic strategy for treating alcoholic liver disease.


Asunto(s)
Depresores del Sistema Nervioso Central/efectos adversos , Dineínas/metabolismo , Etanol/efectos adversos , Hígado/metabolismo , Transcitosis/efectos de los fármacos , Animales , Línea Celular , Depresores del Sistema Nervioso Central/farmacología , Complejo Dinactina , Etanol/farmacología , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/patología , Transporte de Proteínas/efectos de los fármacos , Ratas
5.
Viruses ; 13(5)2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946840

RESUMEN

Natural antisense transcripts (NATs) represent a class of RNA molecules that are transcribed from the opposite strand of a protein-coding gene, and that have the ability to regulate the expression of their cognate protein-coding gene via multiple mechanisms. NATs have been described in many prokaryotic and eukaryotic systems, as well as in the viruses that infect them. The human immunodeficiency virus (HIV-1) is no exception, and produces one or more NAT from a promoter within the 3' long terminal repeat. HIV-1 antisense transcripts have been the focus of several studies spanning over 30 years. However, a complete appreciation of the role that these transcripts play in the virus lifecycle is still lacking. In this review, we cover the current knowledge about HIV-1 NATs, discuss some of the questions that are still open and identify possible areas of future research.


Asunto(s)
Infecciones por VIH/virología , VIH-1/genética , ARN sin Sentido , Transcripción Genética , Replicación Viral , Regulación Viral de la Expresión Génica , Genoma Viral , Genómica/métodos , Humanos , ARN no Traducido
6.
mBio ; 12(1)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436439

RESUMEN

Despite the effectiveness of antiretroviral (ARV) therapy, virological failure can occur in some HIV-1-infected patients in the absence of mutations in drug target genes. We previously reported that, in vitro, the lab-adapted HIV-1 NL4-3 strain can acquire resistance to the integrase inhibitor dolutegravir (DTG) by acquiring mutations in the envelope glycoprotein (Env) that enhance viral cell-cell transmission. In this study, we investigated whether Env-mediated drug resistance extends to ARVs other than DTG and whether it occurs in other HIV-1 isolates. We demonstrate that Env mutations can reduce susceptibility to multiple classes of ARVs and also increase resistance to ARVs when coupled with target-gene mutations. We observe that the NL4-3 Env mutants display a more stable and closed Env conformation and lower rates of gp120 shedding than the WT virus. We also selected for Env mutations in clinically relevant HIV-1 isolates in the presence of ARVs. These Env mutants exhibit reduced susceptibility to DTG, with effects on replication and Env structure that are HIV-1 strain dependent. Finally, to examine a possible in vivo relevance of Env-mediated drug resistance, we performed single-genome sequencing of plasma-derived virus from five patients failing an integrase inhibitor-containing regimen. This analysis revealed the presence of several mutations in the highly conserved gp120-gp41 interface despite low frequency of resistance mutations in integrase. These results suggest that mutations in Env that enhance the ability of HIV-1 to spread via a cell-cell route may increase the opportunity for the virus to acquire high-level drug resistance mutations in ARV target genes.IMPORTANCE Although combination antiretroviral (ARV) therapy is highly effective in controlling the progression of HIV disease, drug resistance can be a major obstacle. Recent findings suggest that resistance can develop without ARV target gene mutations. We previously reported that mutations in the HIV-1 envelope glycoprotein (Env) confer resistance to an integrase inhibitor. Here, we investigated the mechanism of Env-mediated drug resistance and the possible contribution of Env to virological failure in vivo We demonstrate that Env mutations can reduce sensitivity to major classes of ARVs in multiple viral isolates and define the effect of the Env mutations on Env subunit interactions. We observed that many Env mutations accumulated in individuals failing integrase inhibitor therapy despite a low frequency of resistance mutations in integrase. Our findings suggest that broad-based Env-mediated drug resistance may impact therapeutic strategies and provide clues toward understanding how ARV-treated individuals fail therapy without acquiring mutations in drug target genes.


Asunto(s)
Antirretrovirales/farmacología , Farmacorresistencia Viral/genética , VIH-1/efectos de los fármacos , VIH-1/genética , Proteínas del Envoltorio Viral/genética , Línea Celular , Células HEK293 , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/genética , Infecciones por VIH/transmisión , Infecciones por VIH/virología , Inhibidores de Integrasa VIH/farmacología , Células HeLa , Compuestos Heterocíclicos con 3 Anillos , Humanos , Mutación/efectos de los fármacos , Oxazinas , Piperazinas , Piridonas , Linfocitos T , Proteínas del Envoltorio Viral/efectos de los fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
7.
Biomedicines ; 8(3)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197424

RESUMEN

The following review article presents clinical and experimental features of alcohol-induced liver disease (ALD). Basic aspects of alcohol metabolism leading to the development of liver hepatotoxicity are discussed. ALD includes fatty liver, acute alcoholic hepatitis with or without liver failure, alcoholic steatohepatitis (ASH) leading to fibrosis and cirrhosis, and hepatocellular cancer (HCC). ALD is fully attributable to alcohol consumption. However, only 10-20% of heavy drinkers (persons consuming more than 40 g of ethanol/day) develop clinical ALD. Moreover, there is a link between behaviour and environmental factors that determine the amount of alcohol misuse and their liver disease. The range of clinical presentation varies from reversible alcoholic hepatic steatosis to cirrhosis, hepatic failure, and hepatocellular carcinoma. We aimed to (1) describe the clinico-pathology of ALD, (2) examine the role of immune responses in the development of alcoholic hepatitis (ASH), (3) propose diagnostic markers of ASH, (4) analyze the experimental models of ALD, (5) study the role of alcohol in changing the microbiota, and (6) articulate how findings in the liver and/or intestine influence the brain (and/or vice versa) on ASH; (7) identify pathways in alcohol-induced organ damage and (8) to target new innovative experimental concepts modeling the experimental approaches. The present review includes evidence recognizing the key toxic role of alcohol in ALD severity. Cytochrome p450 CYP2E1 activation may change the severity of ASH. The microbiota is a key element in immune responses, being an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. Alcohol consumption changes the intestinal microbiota and influences liver steatosis and liver inflammation. Knowing how to exploit the microbiome to modulate the immune system might lead to a new form of personalized medicine in ALF and ASH.

8.
J Med Entomol ; 46(3): 649-63, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19496439

RESUMEN

Sand flies collected between April 2003 and November 2004 at Tallil Air Base, Iraq, were evaluated for the presence of Leishmania parasites using a combination of a real-time Leishmania-generic polymerase chain reaction (PCR) assay and sequencing of a 360-bp fragment of the glucose-6-phosphate-isomerase (GPI) gene. A total of 2,505 pools containing 26,574 sand flies were tested using the real-time PCR assay. Leishmania DNA was initially detected in 536 pools; however, after extensive retesting with the real-time PCR assay, a total of 456 pools were considered positive and 80 were considered indeterminate. A total of 532 samples were evaluated for Leishmania GPI by sequencing, to include 439 PCR-positive samples, 80 PCR-indeterminate samples, and 13 PCR-negative samples. Leishmania GPI was detected in 284 samples that were sequenced, to include 281 (64%) of the PCR-positive samples and 3 (4%) of the PCR-indeterminate samples. Of the 284 sequences identified as Leishmania, 261 (91.9%) were L. tarentolae, 18 (6.3%) were L. donovani-complex parasites, 3 (1.1%) were L. tropica, and 2 were similar to both L. major and L. tropica. Minimum field infection rates were 0.09% for L. donovani-complex parasites, 0.02% for L. tropica, and 0.01% for the L. major/tropica-like parasite. Subsequent sequencing of a 600-bp region of the "Hyper" gene of 12 of the L. donovani-complex parasites showed that all 12 parasites were L. infantum. These data suggest that L. infantum was the primary leishmanial threat to U.S. military personnel deployed to Tallil Air Base. The implications of these findings are discussed.


Asunto(s)
Insectos Vectores/parasitología , Leishmania/aislamiento & purificación , Personal Militar , Psychodidae/parasitología , Animales , Biodiversidad , ADN Protozoario , Glucosa-6-Fosfato Isomerasa/química , Glucosa-6-Fosfato Isomerasa/genética , Humanos , Irak , Leishmania/genética , Leishmaniasis/parasitología , Leishmaniasis/transmisión , Filogenia , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Factores de Riesgo , Estaciones del Año , Estados Unidos
9.
Biomolecules ; 5(3): 2140-59, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26393662

RESUMEN

The molecular mechanisms that lead to the progression of alcoholic liver disease have been actively examined for decades. Because the hepatic microtubule cytoskeleton supports innumerable cellular processes, it has been the focus of many such mechanistic studies. It has long been appreciated that α-tubulin is a major target for modification by highly reactive ethanol metabolites and reactive oxygen species. It is also now apparent that alcohol exposure induces post-translational modifications that are part of the natural repertoire, mainly acetylation. In this review, the modifications of the "tubulin code" are described as well as those adducts by ethanol metabolites. The potential cellular consequences of microtubule modification are described with a focus on alcohol-induced defects in protein trafficking and enhanced steatosis. Possible mechanisms that can explain hepatic dysfunction are described and how this relates to the onset of liver injury is discussed. Finally, we propose that agents that alter the cellular acetylation state may represent a novel therapeutic strategy for treating liver disease.


Asunto(s)
Hepatopatías Alcohólicas/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Humanos , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional
10.
Am J Trop Med Hyg ; 81(4): 679-84, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19815886

RESUMEN

Chikungunya (CHIK) and O'nyong-nyong (ONN) are important emerging arthropod-borne diseases. Molecular diagnosis of these two viruses in mosquitoes has not been evaluated, and the effects of extraneous mosquito tissue on assay performance have not been tested. Additionally, no real-time reverse transcription-polymerase chain reaction (RT-PCR) assay exists for detecting ONN virus (ONNV) RNA. We describe the development of sensitive and specific real-time RT-PCR assays for detecting CHIK and ONN viral RNA in mosquitoes, which have application for field use. In addition, we compared three methods for primer/probe design for assay development by evaluating their sensitivity and specificity. This comparison resulted in development of virus-specific assays that could detect less than one plaque-forming unit equivalent of each of the viruses in mosquitoes. The use of these assays will aid in arthropod-borne disease surveillance and in the control of the associated diseases.


Asunto(s)
Virus Chikungunya/aislamiento & purificación , Culicidae/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , ARN Viral/aislamiento & purificación , Sensibilidad y Especificidad
11.
Vaccine ; 24(47-48): 6886-92, 2006 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-16828936

RESUMEN

The development of multiagent vaccines offers the advantage of eliciting protection against multiple diseases with minimal inoculations over a shorter time span. We report here the results of using formulations of individual Venezuelan equine encephalitis (VEE) virus replicon-vectored vaccines against a bacterial disease, anthrax; a viral disease, Marburg fever; and against a toxin-mediated disease, botulism. The individual VEE replicon particles (VRP) expressed mature 83-kDa protective antigen (MAT-PA) from Bacillus anthracis, the glycoprotein (GP) from Marburg virus (MBGV), or the H(C) fragment from botulinum neurotoxin (BoNT H(C)). CBA/J mice inoculated with a mixture of VRP expressing BoNT H(C) serotype C (BoNT/C H(C)) and MAT-PA were 80% protected from a B. anthracis (Sterne strain) challenge and then 100% protected from a sequential BoNT/C challenge. Swiss mice inoculated with individual VRP or with mixtures of VRP vaccines expressing BoNT H(C) serotype A (BoNT/A H(C)), MAT-PA, and MBGV-GP produced antibody responses specific to the corresponding replicon-expressed protein. Combination of the different VRP vaccines did not diminish the antibody responses measured for Swiss mice inoculated with formulations of two or three VRP vaccines as compared to mice that received only one VRP vaccine. Swiss mice inoculated with VRP expressing BoNT/A H(C) alone or in combination with VRP expressing MAT-PA and MBGV GP, were completely protected from a BoNT/A challenge. These studies demonstrate the utility of combining individual VRP vaccines into multiagent formulations for eliciting protective immune responses to various types of diseases.


Asunto(s)
Vacunas contra el Carbunco/inmunología , Carbunco/prevención & control , Toxinas Botulínicas/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Marburgvirus/inmunología , Replicón/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/biosíntesis , Proteínas de la Cápside/inmunología , Ensayo de Inmunoadsorción Enzimática , Ratones , Ratones Endogámicos CBA , Neurotoxinas/inmunología , Vacunas Conjugadas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA