Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biomacromolecules ; 25(4): 2136-2155, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38448083

RESUMEN

Cellulose, the most abundant polymer on Earth, has been widely utilized in its nanoform due to its excellent properties, finding applications across various scientific fields. As the demand for nanocellulose continues to rise and its ease of use becomes apparent, there has been a significant increase in research publications centered on this biomaterial. Nanocellulose, in its different forms, has shown tremendous promise as a tissue engineered scaffold for regeneration and repair. Particularly, nanocellulose-based composites and scaffolds have emerged as highly demanding materials for both soft and hard tissue engineering. Medical practitioners have traditionally relied on collagen and its analogue, gelatin, for treating tissue damage. However, the limited mechanical strength of these biopolymers restricts their direct use in various applications. This issue can be overcome by making hybrids of these biopolymers with nanocellulose. This review presents a comprehensive analysis of the recent and most relevant publications focusing on hybrid composites of collagen and gelatin with a specific emphasis on their combination with nanocellulose. While bone and skin tissue engineering represents two areas where a majority of researchers are concentrating their efforts, this review highlights the use of nanocellulose-based hybrids in these contexts.


Asunto(s)
Gelatina , Ingeniería de Tejidos , Andamios del Tejido , Materiales Biocompatibles , Colágeno
2.
Macromol Rapid Commun ; 44(2): e2200628, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36239163

RESUMEN

Nanofibrillated cellulose (NFC) and polymethylsilsesquioxane (PMSQ) based aerogel are prepared by the sol-gel method. The objective of this work is to study the impact of surfactant and base catalyst on the thermal and mechanical performance of the corresponding aerogel. The rheological premonitory assists in predicting the bulk properties of the aerogel. The chemical structure of the aerogel is studied by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and solid-state nuclear magnetic resonance (NMR). X-ray microtomographic (XMT) analysis confirms the homogeneous and monolithic structure of the aerogel. The lowest thermal conductivity is achieved as 23.21 mW m-1 K-1 with V-0 and HBF rating through UL-94 test. Thermal performance of aerogels is cross-verified through modeling and simulation in COMSOL multiphysics platform. The mechanical properties of aerogel are evaluated by monolithic compression test in axial and radial compression test up to 90% strain, cyclic compression loading-unloading, and reloading test, flexural test, and dynamic mechanical analysis. The time-temperature analysis has shown around 5 °C temperature difference in the middle of the room after using the aerogel panel at the exposed surface, which assists in the practical application of the synthesized aerogel panel.


Asunto(s)
Celulosa , Compuestos de Organosilicio , Celulosa/química , Tensoactivos , Polímeros
3.
Langmuir ; 32(7): 1716-22, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26809590

RESUMEN

We report here the swelling and relaxation properties of confined poly(n-butyl methacrylate) (PBMA) films having thicknesses of less than 70 nm under supercritical carbon dioxide (scCO2) using the X-ray reflectivity technique. Swellability is found to be dominant in thinner films compared to thicker ones as a consequence of the confinement-induced densification of the former. Swellability is proportionately increased with the density of the film. PBMA films exhibit a more significant swelling than do PS films, and their differences become more prominent with the increase in film thickness. A comparison between the results obtained for polystyrene (PS) and PBMA ultrathin films reveals that the swellability is dependent upon the specific intermolecular interaction between CO2 and the chemical groups available in the polymers. Owing to strong Lewis acid-base interactions with scCO2 and the lower glass-transition temperature (bulk Tg ≈ 29 °C), PBMA films exhibit a greater amount of swelling than do PS films (bulk Tg ≈ 100 °C). Though they reach to the different swollen state upon exposition, identical relaxation behavior as a function of aging time is evidenced. This unprecedented behavior can be ascribed to the strong bonding between trapped CO2 and PBMA that probably impedes the release of CO2 molecules from the swollen PBMA films manifested in suppressed relaxation.

4.
Eur Phys J E Soft Matter ; 38(6): 56, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26087914

RESUMEN

By performing Atomic Force Microscopy measurements of pull-off force as a function of the temperature, we were able to probe the dynamic of supported thin polystyrene (PS) films. Thermal transitions induce modifications in the surface energy, roughness and surface modulus that are clearly detected by AFM and related to PS chain relaxation mechanisms. We demonstrated the existence of three transition temperatures that can be associated to the relaxation of polymer chains located at different depth regions within the polymer film. Independently of the film thickness, we have confirmed the presence of a region of high mobility for the polymer chains at the free interface. The thickness of this region is estimated to be above 7nm. The detection of a transition only present for film thicker than the gyration radius Rg is linked to the dynamics of polymer chains in a bulk conformation (i.e. not in contact with the free interface). We claim here that our results demonstrate, in agreement with other techniques, the stratification of thin polymer film depth profile in terms of relaxation behavior.

5.
ACS Appl Bio Mater ; 7(10): 7009-7022, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39378355

RESUMEN

Cellulose nanofiber-based aerogels (CNFAs) hold immense promise across diverse fields, but their innate hydrophilicity and structural fragility in water have constrained their utility in water purification. This study introduces a green approach to induce hydrophobicity into CNFAs via thermally induced phase separation (TIPS) of beeswax, which was adhered to the nanofiber by hydrogen bonding and hydrophobic-hydrophobic interactions. The fabricated aerogel was characterized by using FTIR, SEM, XRD, TGA, contact angle, BET, and compression test. The resulting beeswax cellulose nanofiber-based aerogels (BCNFAs) possess a highly porous structure and extremely low density, enabling the aerogels to self-float and facilitate practical applications and recycling. Due to these remarkable characteristics, BCNFAs had excellent adsorption capacity within 10 min to effectively remove tetracycline (TC) from water with an adsorption capacity of 31.6 mg/g. The demonstrated methodology to induce hydrophobicity in CNFAs via TIPS of beeswax on CNFAs could be an eco-friendly and scalable approach for the fabrication of robust BCNFAs without using any toxic chemicals. So far, this is the first report on to make robust hydrophobic CNFAs by employing TIPS of beeswax while maintaining the porosity of CNFAs, which is highly desirable for effective TC tablet adsorption from water in the present context. The demonstrated work has commercial potential as it focuses on the practical utility of the modified aerogel for adsorbing conventional tetracycline tablets, rather than exclusively targeting the pharmaceutical ingredient alone.


Asunto(s)
Celulosa , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Nanofibras , Tetraciclina , Ceras , Nanofibras/química , Ceras/química , Celulosa/química , Adsorción , Tetraciclina/química , Tetraciclina/aislamiento & purificación , Comprimidos , Tamaño de la Partícula , Temperatura , Materiales Biocompatibles/química , Propiedades de Superficie , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Separación de Fases
6.
Int J Biol Macromol ; 255: 128004, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979737

RESUMEN

Cellulose nanofibers have been extracted from arecanut palm sheath fibers via mild oxalic acid hydrolysis coupled with steam explosion technique. Cellulose nanofibers with diameter of 20.23 nm were obtained from arecanut palm sheath fibers. A series of robust hydrophobic cellulose nanopapers were fabricated by combining the synergistic effect of surface roughness induced by the successful deposition of zinc oxide (ZnO) nanoflakes and stearic acid modification via a simple and cost-effective method. In this work, agro-waste arecanut palm sheath was employed as a novel source for the extraction of cellulose nanofibers. 2 wt% of ZnO nanoflakes and 1 M concentration of stearic acid were used to fabricate mechanically robust hydrophobic cellulose nanopapers with a water contact angle (WCA) of 134°. During the deposition of zinc oxide nanoflakes on the CNP for inducing surface roughness, a hydrogen bonding interaction is formed between the hydroxyl groups of cellulose nanofibers and the zinc oxide nanoflakes. When this surface roughened CNP was dipped in stearic acid solution. The hydroxyl groups in zinc oxide nanoflakes undergoes esterification reaction with carboxyl groups in stearic acid solution forming an insoluble stearate layer and thus inducing hydrophobicity on CNP. The fabricated hydrophobic cellulose nanopaper displayed a tensile strength of 22.4 MPa and better UV blocking ability which is highly desirable for the sustainable packaging material in the current scenario. Furthermore, the service life of the pristine and modified cellulose nanopapers was predicted using the Arrhenius equation based on the tensile properties obtained during the accelerated ageing studies. The outcome of this study would be broadening the potential applications of hydrophobic and mechanically robust cellulose nanopapers in sustainable packaging applications.


Asunto(s)
Nanofibras , Óxido de Zinc , Óxido de Zinc/química , Celulosa/química , Embalaje de Productos , Nanofibras/química , Interacciones Hidrofóbicas e Hidrofílicas
7.
ACS Omega ; 7(47): 43254-43264, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36467964

RESUMEN

Biocomposites based on biodegradable polybutylene succinate (PBS) and organomodified clays (OMt) were prepared by melt blending process. The OMt nanofillers were obtained by ion exchange reaction between sodium montmorillonite (Mt) and gemini surfactants bearing 4-decyloxyphenylacetamide hydrophobic chains and ethylene or hexylene spacer. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and rheological measurement results showed that the investigated hybrids present a uniform dispersion with an exfoliation of clay into the PBS matrix, particularly for short spacer surfactant based composites. The effect of organoclay loading and composition on the thermal, mechanical, and barrier properties was also investigated. High clay loading and long gemini surfactant spacer lead to substantial improvement of Young modulus values by 21%, while low clay content induces a reduction of the hybrid's crystallinity due to strong OMt-PBS interactions. Compared to that of the neat PBS film, a significant reduction of the water vapor permeability (WVP) by 28% was obtained by adding only 3 wt % of PBS/OMt (2) which opens up prospects for this material in the field of food packaging. This study shows that gemini surfactant-modified organoclays can be used as effective nanofillers in a PBS matrix to access to value-added nanocomposites.

8.
Polymers (Basel) ; 13(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34641043

RESUMEN

With an increasing interest for molded pulp product (MPP) in the industry, it is important to fully understand how the manufacturing process is different from papermaking. One specific way to differentiate the processes is to compare their resulting products. As the paper industry uses several wood fibers with various pulping processes, it is interesting to compare some of these fibers, to further progress our understanding of the MPP process. In this study, six different wood fibers were used (as received) and analyzed to obtain the sample with the lowest moisture uptake and highest tensile properties. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and fiber analysis module (MorFi) observations were performed, as well as moisture uptake measurements after sorption and tensile tests. We observed significant differences between the fibers tested. Kraft fibers (bleached softwood kraft pulp (BSKP), bleached hardwood kraft pulp (BHKP), and unbleached softwood kraft pulp (USKP)) showed smoother surfaces and less non-cellulosic molecules, such as hemicellulose, lignin, and pectin, in the SEM images. Bleached chemi-thermomechanial pulp (BCTMP) and recycled pulps (R-NPM and R-CBB) both showed non-cellulosic molecules and rougher surfaces. These results were confirmed with the FTIR analysis. With kraft fibers, MPP mechanical properties were lower than non-kraft fibers. Resulting moisture uptake is in between the recycled fibers (lowest moisture uptake) and BCTMP (highest moisture uptake). The removal of non-cellulosic molecules reduces the mechanical properties of the resulting MPP. The incorporation of non-wood molecules, as found in recycled fibers, also reduces the mechanical properties, as well as moisture uptake, when compared with BCTMP.

9.
Int J Biol Macromol ; 177: 505-516, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33621565

RESUMEN

To improve PLA's properties and overcome its drawbacks such us poor thermal stability, resistance and gas barrier properties, several studies have been performed using different nanofillers. In this work, PLA nanocomposites reinforced by three organoclays, OMt(8-4-8), OMt(10-4-10) and OMt(12-4-12) at various weight percentages (1 and 3 wt%) were prepared by melt mixing using a twin-screw extruder. The organoclays were obtained from sodium montmorillionite and gemini surfactants bearing different hydrophobic chain lengths. The resulting nanocomposites have been characterized in terms of composition and morphology by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The thermal stability and cold crystallization behavior were accessed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of clay composition and concentration on the mechanical and rheological properties of the nanocomposites as well as their water vapor permeability has been also investigated. The resulting nanocomposites exhibit a significantly reduced permeability as compared to unfilled PLA and an improved young modulus and toughness at the detriment of ductility.


Asunto(s)
Alquenos/química , Arcilla/química , Nanocompuestos/química , Poliésteres/química , Compuestos de Amonio Cuaternario/química
10.
Langmuir ; 26(2): 1304-10, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-19785428

RESUMEN

A versatile method for the grafting of azide-terminated polymer chains to alkyne-functionalized pseudobrushes by the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition has been developed. First, poly[(propargyl methacrylate)-r-(glycidyl methacrylate)-r-(methyl methacrylate)] random copolymers with monomer ratios of respectively 27/27/46, 41/31/28, and 45/55/0 were synthesized by RAFT polymerization. Then, dense alkyne-functionalized pseudobrushes were grafted in melt by thermal ring-opening of the glycidyl groups by the silanols from the silicon substrate. Finally, the grafting of tailor-made alpha-methoxy-omega-azido-poly(ethylene glycol)s (M(w) approximately 5000, 20,000, and 50,000 g/mol) by Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition was performed in sealed reactors at 60 degrees C for 72 h using a polymer weight fraction of 10% in tetrahydrofuran and Cu(PPh(3))(3)Br/DIPEA as the catalytic system. Alkyne-functionalized pseudobrushes and poly(ethylene glycol) brushes were characterized by ellipsometry, scanning probe microscopy, and water contact angle measurements. This "grafting-to" approach represents a fast and versatile method to provide thick and homogeneous polymer brushes with a high surface coverage. A major benefit of this strategy is the tunable and versatile tethering of alkyne functionalities to silicon substrates using a straightforward spin-coating procedure.

11.
J Phys Chem B ; 113(6): 1569-78, 2009 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-19193163

RESUMEN

The effect of annealing on the miscibility and phase behavior of Sorona {poly(trimethylene terephthalate), PTT} and bisphenol A polycarbonate (PC) blends was examined. These blends exhibited heterogeneous phase-separated morphology and two well-spaced glass transition temperatures (Tgs) indicating immiscibility. The Sorona/PC blends were thermally annealed at 260 degrees C for different times to induce various extents of transreactions between the two polymers. After annealing at high temperature the original two Tgs of blends were found to merge into one single Tg, exhibiting a homogeneous morphology. It is interesting to note that upon extended annealing the original semicrystalline morphology transformed into an amorphous nature. This is attributed to chemical transreactions between the PTT and PC chain segments as evidenced with FTIR, DSC, DMA, 1H NMR, and WAXS measurements. A new characteristic aryl C-O-C vibration band present at 1070 cm(-1) in the FTIR spectra of the annealed blends indicated the formation of an aromatic polyester structure due to the transreactions between PTT and PC. The sequence structures of the produced copolyesters were determined by a NMR triad analysis, which showed that the randomness increased with time of heating. WAXS analysis confirmed that the PTT/PC blends completely lost their crystallinity when annealed at 260 degrees C for a period of 120 min or longer, indicating the formation of fully random copolyesters. A random copolymer formed as a result of the transreactions between PTT and PC serves as a compatibilizer at the beginning, and upon extended annealing this became the main species of the system which is finally transformed to a homogeneous and amorphous phase.


Asunto(s)
Cemento de Policarboxilato/química , Tereftalatos Polietilenos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Tamaño de la Partícula , Dispersión de Radiación , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Temperatura , Termodinámica , Difracción de Rayos X
12.
ACS Appl Mater Interfaces ; 10(18): 16193-16202, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29684278

RESUMEN

Thermal superinsulating properties of biobased materials are investigated via the structuration of aerogels through a biphasic system. Highly stable Pickering emulsions are produced using TEMPO-oxidized cellulose nanofibrils (NFC) adsorbed at an oil/water interface. NFCs form an entangled system of clusters of droplets that lead to excellent mechanical properties. The emulsions produced are strong gels that are further used as template to form aerogels. The freeze-dried emulsions result in porous bioaerogels with extremely low densities (0.012-0.030 g/cm3). We describe a hierarchical morphology with three levels of porosity: an alveolar organization of larger macropores due to ice crystals, spherical smaller macropores induced by the emulsion template, and mesoporous domains localized at the pore walls level. The low-density bioaerogels have compression moduli as high as 1.5 MPa and can be deformed up to 60% strain before the structure collapse. NFC aerogels have thermal superinsulating properties; the lowest thermal conductivity obtained is 0.018 W/(m·K). In the context of the development of sustainable materials, we demonstrate that NFC-stabilized Pickering emulsions are excellent templates to produce fully biobased, mechanically strong thermal superinsulating materials.

13.
ACS Appl Mater Interfaces ; 10(23): 20032-20043, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29812890

RESUMEN

A series of flexible, lightweight, and highly conductive cellulose nanopapers were fabricated through in situ polymerization of aniline monomer on to cellulose nanofibers with a rationale for attenuating electromagnetic radiations within 8.2-12.4 GHz (X band). The demonstrated paper exhibits good conductivity due to the formation of a continuous coating of polyaniline (PANI) over the cellulose nanofibers (CNF) during in situ polymerization, which is evident from scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. The free hydroxyl groups on the surface of nanocellulose fibers promptly form intermolecular hydrogen bonding with PANI, which plays a vital role in shielding electromagnetic radiations and makes the cellulose nanopapers even more robust. These composite nanopapers exhibited an average shielding effectiveness of ca. -23 dB (>99% attenuation) at 8.2 GHz with 1 mm paper thickness. The fabricated papers exhibited an effective attenuation of electromagnetic waves by a predominant absorption mechanism (ca. 87%) rather than reflection (ca. 13%), which is highly desirable for the present-day telecommunication sector. Unlike metal-based shields, these demonstrated PANI/CNF papers have given a new platform for designing green microwave attenuators via an absorption mechanism. The prime novelty of the present study is that these robust PANI/CNF nanopapers have the ability to attenuate incoming microwave radiations to an extent that is 360% higher than the shielding effectiveness value reported in the previous literature. This makes them suitable for use in commercial electronic gadgets. This demonstrated work also opens up new avenues for using cellulose nanofibers as an effective substrate for fabricating conductive flexible papers using polyaniline. The direct current conductivity value of PANI/CNF nanopaper was 0.314 S/cm, which is one of the key requisites for the fabrication of efficient electromagnetic shields. Nevertheless, such nanopapers also open up an arena of applications such as electrodes for supercapacitors, separators for Li-S, Li-polymer batteries, and other freestanding flexible paper-based devices.

14.
J Colloid Interface Sci ; 305(2): 330-8, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17084853

RESUMEN

The behavior of hydroxyl-terminated PEG400 in water was investigated by surface tension measurements and 13C NMR as a function of concentration and temperature. PEG400 exhibited a critical aggregative concentration (cac) that evidenced both its amphiphilic character and its aggregation capacity. Moreover, the chemical shifts of the different carbons of the PEG were followed by NMR versus concentration at various temperatures. We observed a plateau between 20 and 35 degrees C at concentrations above 0.2 mol L(-1) and ascribed it to the aggregation process. A good correlation was found between the NMR spectra in the region of aggregation and the cac region in the phase diagram. Our investigations were also focused on the solid-liquid region of the phase diagram at lower temperatures. These experimental data, together with conclusions available in the literature, led us to propose explanations for the conformation/hydration/aggregation in the PEG400-water solutions phenomena.

15.
Carbohydr Polym ; 157: 105-113, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-27987805

RESUMEN

Nanofibrillated cellulose (NFC) aerogels were prepared by spray freeze-drying (SFD). Their structural, mechanical and thermal insulation properties were compared to those of NFC aerogels prepared by conventional freeze-drying (CFD). The purpose of this investigation is to develop superinsulating bioaerogels by reducing their pore size. Severe reduction of the aerogel pore size and skeleton architecture were observed by SEM, aerogels prepared by SFD method show a fibril skeleton morphology, which defines a mesoporous structure. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, the thermal insulation properties were significantly improved for SFD materials compared to CFD aerogel, reaching values of thermal conductivity as low as 0.018W/(mK). Moreover, NFC aerogels have a thermal conductivity below that of air in ambient conditions, making them one of the best cellulose based thermal superinsulating material.

16.
Carbohydr Polym ; 138: 335-48, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26794770

RESUMEN

Bio-composite aerogels based on bleached cellulose fibers (BCF) and cellulose nanoparticles having various morphological and physico-chemical characteristics are prepared by a freeze-drying technique and characterized. The various composite aerogels obtained were compared to a BCF aerogel used as the reference. Severe changes in the material morphology were observed by SEM and AFM due to a variation of the cellulose nanoparticle properties such as the aspect ratio, the crystalline index and the surface charge density. BCF fibers form a 3D network and they are surrounded by the cellulose nanoparticle thin films inducing a significant reduction of the size of the pores in comparison with a neat BCF based aerogel. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, a decrease of the thermal conductivities is observed from 28mWm(-1)K(-1) (BCF aerogel) to 23mWm(-1)K(-1) (bio-composite aerogel), which is below the air conductivity (25mWm(-1)K(-1)). This improvement of the insulation properties for composite materials is more pronounced for aerogels based on cellulose nanoparticles having a low crystalline index and high surface charge (NFC-2h). The significant improvement of their insulation properties allows the bio-composite aerogels to enter the super-insulating materials family. The characteristics of cellulose nanoparticles also influence the mechanical properties of the bio-composite aerogels. A significant improvement of the mechanical properties under compression is obtained by self-organization, yielding a multi-scale architecture of the cellulose nanoparticles in the bio-composite aerogels. In this case, the mechanical property is more dependent on the morphology of the composite aerogel rather than the intrinsic characteristics of the cellulose nanoparticles.


Asunto(s)
Celulosa/química , Geles/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Nanofibras/química , Nanoestructuras/química , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Conductividad Térmica , Difracción de Rayos X
17.
Adv Drug Deliv Rev ; 82-83: 93-105, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25500273

RESUMEN

Wound healing is a dynamic and complex phenomenon of replacing devitalized tissues in the body. Urethral healing takes place in four phases namely inflammation, proliferation, maturation and remodelling, similar to dermal healing. However, the duration of each phase of wound healing in urology is extended for a longer period when compared to that of dermatology. An ideal wound dressing material removes exudate, creates a moist environment, offers protection from foreign substances and promotes tissue regeneration. A single wound dressing material shall not be sufficient to treat all kinds of wounds as each wound is distinct. This review includes the recent attempts to explore the hidden potential of growth factors, stem cells, siRNA, miRNA and drugs for promoting wound healing in urology. The review also discusses the different technologies used in hospitals to treat wounds in urology, which make use of innovative biomaterials synthesised in regenerative medicines like hydrogels, hydrocolloids, foams, films etc., incorporated with growth factors, drug molecules or nanoparticles. These include surgical zippers, laser tissue welding, negative pressure wound therapy, and hyperbaric oxygen treatment.


Asunto(s)
Oxigenoterapia Hiperbárica/métodos , Uretra/efectos de los fármacos , Uretra/cirugía , Enfermedades Urológicas/cirugía , Cicatrización de Heridas/efectos de los fármacos , Materiales Biocompatibles/uso terapéutico , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Terapia por Láser/métodos , MicroARNs/farmacología , Terapia de Presión Negativa para Heridas/métodos , ARN Interferente Pequeño/farmacología , Trasplante de Células Madre/métodos
18.
J Biomed Nanotechnol ; 11(9): 1550-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26485926

RESUMEN

The biocompatibility and excellent ion exchange capacity make faujasites ideal candidates for tissue engineering applications. A novel pectin/copper exchanged faujasite hybrid membrane was synthesized by solvent casting technique, using calcium chloride as the crosslinking agent. AFM images revealed the egg-box model organization of calcium cross-linked pectin chains used as a matrix. The morphology of composite membranes was characterized by SEM and their elemental composition was determined using EDX. The higher contact angle of P (1%) when compared to that of native pectin figured out an enhanced hydrophobicity of hybrid material. The embedded faujasite particles maintained their crystalline structure as revealed by XRD and their interactions with the polymer matrix was evaluated by FTIR. The composite membrane with 1% (w/w) of copper exchanged faujasite, P(1%), exhibited better thermal stability, excellent antibacterial activity, controlled swelling and degradation. Finally, it displayed cell viability of 89% on NIH3T3 fibroblast cell lines and aided in improving wound healing and re-epithelialisation in Sprague Dawley rats. The obtained data suggested their potential as ideal matrices for efficient treatment of burn wounds.


Asunto(s)
Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Vendajes , Laceraciones/terapia , Nanopartículas del Metal/administración & dosificación , Nanocompuestos/ultraestructura , Zeolitas/química , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Cobre/administración & dosificación , Cobre/química , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Difusión , Diseño de Equipo , Análisis de Falla de Equipo , Fibroblastos/citología , Fibroblastos/fisiología , Laceraciones/patología , Masculino , Ensayo de Materiales , Membranas Artificiales , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Nanocápsulas/administración & dosificación , Nanocápsulas/química , Nanocápsulas/ultraestructura , Nanocompuestos/química , Tamaño de la Partícula , Pectinas/administración & dosificación , Pectinas/química , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie , Resultado del Tratamiento , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/fisiología
19.
ACS Nano ; 9(8): 8184-93, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26149069

RESUMEN

In polymer physics, the dewetting of spin-coated polystyrene ultrathin films on silicon remains mysterious. By adopting a simple top-down method based on good solvent rinsing, we are able to prepare flat polystyrene films with a controlled thickness ranging from 1.3 to 7.0 nm. Their stability was scrutinized after a classical annealing procedure above the glass transition temperature. Films were found to be stable on oxide-free silicon irrespective of film thickness, while they were unstable (<2.9 nm) and metastable (>2.9 nm) on 2 nm oxide-covered silicon substrates. The Lifshitz-van der Waals intermolecular theory that predicts the domains of stability as a function of the film thickness and of the substrate nature is now fully reconciled with our experimental observations. We surmise that this reconciliation is due to the good solvent rinsing procedure that removes the residual stress and/or the density variation of the polystyrene films inhibiting thermodynamically the dewetting on oxide-free silicon.

20.
J Colloid Interface Sci ; 272(1): 218-24, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-14985040

RESUMEN

The adsorption of stereoregular polymers and its effect on the conformation and dynamics of the polymer at interfaces are only poorly understood. 1H NMR has revealed a lowering of the peaks assigned to isotactic sequences whatever the PMMA tacticity, which provides evidence of stereospecific adsorption of the isotactic segments on silica. Entropic factors are therefore assumed to control the configuration of the adsorbed layer. Tacticity-dependent rheological behavior is revealed by dynamic investigations carried out on silica dispersions. The driving forces likely to induce the stereoselective adsorption and tacticity-dependent rheology of suspensions are discussed.


Asunto(s)
Polimetil Metacrilato/química , Dióxido de Silicio/química , Espectroscopía de Resonancia Magnética/métodos , Reología , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA