Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Appl Biochem ; 69(2): 668-675, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33660355

RESUMEN

Hyperlipidemia is a common metabolic disorder in the general population, which may arise in hypothyroidism. Apelin is an endogenous ligand that acts as an adiponectin, and is involved in energy storage and metabolism. This study evaluated the effects of apelin administration per se or in combination with T4 on the serum level of thyroid-stimulating hormone (TSH), body weight, and lipid profile, along with the serum level of apelin, and its mRNA expression in heart, in 6-propyl-2-thiouracil (PTU)-induced hypothyroid rats. Male Wistar rats were assigned to five different groups: control, H (hypothyroid), H+A, H+T, and H+A+T. All groups except the control one received PTU (0.05%) in the drinking water for 6 weeks. In addition to PTU, the H+A, H+T, and H+A+T groups received apelin (200 µg/kg/day, i.p.), l-thyroxin (T4) (20 µg/kg/day, via gavage tube), and apelin+T4 during the last 14 days of the trial, respectively. A combined application of T4 and apelin in the H+A+T group effectively diminished mean TSH level, low-density-lipoprotein cholesterol/high-density-lipoprotein cholesterol ratio, and atherogenic index in these animals when compared with these values for the H group. Coadministration of apelin with T4 may offer valuable therapeutic benefits, specifically lowering blood plasma TSH, lipid disorder, and atherosclerosis biomarkers in PTU-induced hypothyroid rats.


Asunto(s)
Apelina , Hipotiroidismo , Animales , Apelina/uso terapéutico , Humanos , Hipotiroidismo/inducido químicamente , Hipotiroidismo/tratamiento farmacológico , Lípidos , Masculino , Propiltiouracilo/toxicidad , Ratas , Ratas Wistar , Tirotropina
2.
Magn Reson Chem ; 60(12): 1097-1112, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34847251

RESUMEN

Estimations of accurate and reliable NMR chemical shift values, coupling patterns and constants within a reasonable timeframe remain significantly challenging, and the unavailability of reliable software strategies for the prediction of low-field (e.g., 60 MHz) spectra from those acquired at higher operating frequencies hampers their direct comparison. Hence, this study explored the applications of accessible software options for predicting these parameters in the 1 H NMR profiles of analytes as a function of magnetic field strength; this was performed for individual analytes and also for complex biofluid matrices featured in metabolomics investigations. For this purpose, results from the very first successful experimental acquisition and simulation of the 1 H NMR profiles of intact human salivary supernatant samples on a 60 MHz benchtop spectrometer were evaluated. Using salivary metabolite concentrations determined at 400 MHz, it was demonstrated that simulation of the low-field spectra of five biomolecules with the most prominent 1 H resonances detectable allowed multiple component fits to be applied to experimental spectra. Hence, these salivary 1 H NMR profiles could be successfully predicted throughout the 45-600 MHz operating frequency range. With the exception of propionate resonance multiplets, which revealed more complex coupling patterns at low field and required more astute computational and fitting options, valuable quantitative metabolomics data on salivary acetate, formate, methanol and glycine could be attained from low-field spectrometres. These studies are both timely and pertinent in view of the recent advancement of low-field benchtop NMR facilities for diagnostically significant biomarker tracking in biofluids. Experiments performed with added ammonium chloride to facilitate the release of salivary metabolites from biopolymer binding sites provided evidence that a small but nevertheless significant proportion of propionate, but not lactate, was bound to such sites, an observation of much relevance to biomolecule quantification in salivary metabolomics investigations.


Asunto(s)
Metabolómica , Propionatos , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Simulación por Computador , Imagen por Resonancia Magnética , Mezclas Complejas
3.
Lasers Med Sci ; 37(4): 2249-2257, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35028767

RESUMEN

The development of protocols for laser-assisted therapy demands strict compliance with comprehensive operating parametry. The purpose of this investigation was to examine the accuracy of correlation between laser control panel and fibre emission power values in a selection of diode dental lasers. Through retrospective analysis using successive systematic review and meta-analysis, it is clear that there is inconsistency in the details, and possible inaccuracies in laser power applied and associated computed data. Through a multi-centre investigation, 38 semi-conductor ("diode") dental laser units were chosen, with emission wavelengths ranging from 445 to 1064 nm. Each unit had been recently serviced according to manufacturer's recommendations, and delivery fibre assembly checked for patency and correct alignment with the parent laser unit. Subject to the output capacity of each laser, four average power values were chosen using the laser control panel-100 mW, 500 mW, 1.0 W, and 2.0 W. Using a calibrated power meter, the post-fibre emission power value was measured, and a percentage power loss calculated. For each emission, a series of six measurements were made and analysed to investigate sources of power losses along the delivery fibre, and to evaluate the precision of power loss determinations. Statistical analysis of a dataset comprising % deviations from power setting levels was performed using a factorial ANOVA model, and this demonstrated very highly significant differences between devices tested and emission power levels applied (p < 10-142 and < 10-52 respectively). The devices × emission power interaction effect was also markedly significant (p < 10-66), and this confirmed that differences observed in these deviations for each prior power setting parameter were dependent on the device employed for delivery. Power losses were found to be negatively related to power settings applied. Significant differences have emerged to recommend the need to standardize a minimum set of parameters that should form the basis of comparative research into laser-tissue interactions, both in vitro and in vivo.


Asunto(s)
Terapia por Láser , Terapia por Luz de Baja Intensidad , Odontología , Terapia por Láser/métodos , Rayos Láser , Terapia por Luz de Baja Intensidad/métodos , Metaanálisis como Asunto , Estudios Multicéntricos como Asunto , Estudios Retrospectivos
4.
Int J Mol Sci ; 21(7)2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32260582

RESUMEN

Lysosomal storage disorders (LSDs) are predominantly very rare recessive autosomal neurodegenerative diseases.Sphingolipidoses, a sub-group of LSDs, result from defects in lysosomal enzymes involved in sphingolipid catabolism, and feature disrupted storage systems which trigger complex pathogenic cascades with other organelles collaterally affected. This process leads to cell dysfunction and death, particularly in the central nervous system. One valuable approach to gaining insights into the global impact of lysosomal dysfunction is through metabolomics, which represents a discovery tool for investigating disease-induced modifications in the patterns of large numbers of simultaneously-analysed metabolites, which also features the identification of biomarkers Here, the scope and applications of metabolomics strategies to the investigation of sphingolipidoses is explored in order to facilitate our understanding of the biomolecular basis of these conditions. This review therefore surveys the benefits of applying 'state-of-the-art' metabolomics strategies, both univariate and multivariate, to sphingolipidoses, particularly Niemann-Pick type C disease. Relevant limitations of these techniques are also discussed, along with the latest advances and developments. We conclude that metabolomics strategies are highly valuable, distinctive bioanalytical techniques for probing LSDs, most especially for the detection and validation of potential biomarkers. They also show much promise for monitoring disease progression and the evaluation of therapeutic strategies and targets.


Asunto(s)
Metabolómica/métodos , Enfermedad de Niemann-Pick Tipo C/metabolismo , Biomarcadores/análisis , Humanos , Espectroscopía de Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/normas , Espectrometría de Masas/métodos , Espectrometría de Masas/normas , Metabolómica/normas , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología , Esfingolípidos/análisis , Esfingolípidos/metabolismo
5.
Phytother Res ; 31(3): 410-417, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28124400

RESUMEN

Acne vulgaris, a chronic condition associated with overgrowth of Propionibacterium acnes and Staphylococcus epidermidis, is commonly treated with antibiotics. However, the emergence of antibiotic resistance has resulted in a need for alternative therapies. The aim of this study is to develop a topical preparation incorporating essential oils (EOs) for use against acne-associated bacteria and assess its efficacy against prescription therapies Dalacin T and Stiemycin. Antimicrobial screening of rosewood, clove bud and litsea EOs was conducted before interactions between binary and ternary combinations were determined against P. acnes and S. epidermidis (type and clinical isolates) using minimum inhibitory concentrations and fractional inhibitory concentrations. The EOs were characterised by both gas chromatography-mass spectrometry and nuclear magnetic resonance. A combination of 0.53 mg/mL litsea, 0.11 mg/mL rosewood and 0.11 mg/mL clove bud was formulated into herbal distillates and compared with Dalacin T and Stiemycin against antibiotic sensitive and resistant isolates (erythromycin). The distillate with EO had synergistic activity against P. acnes (7log10 reduction) and indifferent activity against S. epidermidis (6log10 reduction); antimicrobial activity was either significantly (p ≤ 0.05) more antimicrobial or equivalent to that of Dalacin T and Stiemycin. This formulation may serve as a valuable alternative for the control of acne vulgaris-associated bacteria. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Acné Vulgar/microbiología , Antibacterianos/administración & dosificación , Aceites Volátiles/administración & dosificación , Aceites Volátiles/farmacología , Propionibacterium acnes/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Acné Vulgar/tratamiento farmacológico , Administración Tópica , Antibacterianos/farmacología , Antiinfecciosos/administración & dosificación , Clindamicina/administración & dosificación , Clindamicina/farmacología , Combinación de Medicamentos , Sinergismo Farmacológico , Eritromicina/administración & dosificación , Eritromicina/farmacología , Cromatografía de Gases y Espectrometría de Masas , Humanos , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Propionibacterium acnes/crecimiento & desarrollo , Staphylococcus epidermidis/crecimiento & desarrollo
6.
J Proteome Res ; 15(10): 3511-3527, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27503774

RESUMEN

Clinical manifestations of Niemann-Pick type C1 (NP-C1) disease include neonatal hepatosplenomegaly and in some patients progressive liver dysfunction and failure. This study involved a 1H NMR-linked metabolomics analysis of liver samples collected from a NP-C1 disease mutant mouse model in order to explore time-dependent imbalances in metabolic pathways associated with NP-C1 liver dysfunction, including fibrosis. NP-C1 mutant (Npc1-/-; NP-C1), control (Npc1+/+; WT), and NP-C1 heterozygous mice (Npc1+/-; HET) were generated from heterozygote matings. Aqueous extracts of these liver samples collected at time points of 3, 6, 9, and 11 weeks were subjected to high-resolution NMR analysis, and multivariate (MV) metabolomics analyses of data sets acquired were performed. A MV random forests (RFs) model effectively discriminated between NP-C1 and a combined WT/HET hepatic NMR profiles with very high predictive accuracy and reliability. Key distinguishing features included significant upregulations in the hepatic concentrations of phenylalanine, tyrosine, glutamate, lysine/ornithine, valine, threonine, and hypotaurine/methionine, and diminished levels of nicotinate/niacinamide, inosine, phosphoenolpyruvate, and 3-hydroxyphenylacetate. Quantitative pathway topological analysis confirmed that imbalances in tyrosine biosynthesis, and hepatic phenylalanine, tyrosine, glutamate/glutamine, and nicotinate/niacinamide metabolism were involved in the pathogenesis of NP-C1 disease-associated liver dysfunction/damage. 1H NMR-linked metabolomics analysis provides valuable biomarker information regarding hepatic dysfunction or damage in NP-C1 disease.


Asunto(s)
Hígado/metabolismo , Espectroscopía de Resonancia Magnética , Metabolómica , Enfermedad de Niemann-Pick Tipo C/metabolismo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Hepatopatías , Redes y Vías Metabólicas , Ratones , Factores de Tiempo
8.
Crit Rev Biotechnol ; 34(4): 328-37, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23919239

RESUMEN

Optimal wound dressings should be capable of mechanical wound protection and also facilitate the healing process via maintenance of suitable environmental conditions and the controlled delivery of bioactive molecules. Hydrogels present suitable properties for wound-dressing applications such as good biocompatibility, together with a high water content, the latter of which is important for the maintenance of a moist environment and ready removal from the wound with a minimal level of associated pain. However, their properties as drug delivery systems can be improved by the use of cyclodextrins as cross-linking agents. Cyclodextrins have been extensively used as "carriers" on food, textile, cosmetic and, most especially, in the pharmaceutical industry in view of their powerful complexation abilities and biocompatibilities, together with further desirable characteristics. The conjugation of cyclodextrins with hydrogels may allow the achievement of an optimal wound-dressing material, because the hydrogel component will maintain the moist environment required for the healing process, and the cyclodextrin moiety has the ability to protect and modulate the release of bioactive molecules. Therefore, this review aims to gather information regarding cyclodextrin-based hydrogels for possible wound-dressing applications.


Asunto(s)
Vendajes , Ciclodextrinas , Hidrogeles , Animales , Portadores de Fármacos , Humanos , Cicatrización de Heridas
9.
Metabolites ; 14(7)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39057695

RESUMEN

Diabetes mellitus is considered to be the most common health issue affecting almost 1 in 11 adults globally. Oral health complications including xerostomia, periodontal disease, dental caries, and soft tissue lesions are prevalent among individuals with diabetes, and therefore an understanding of the potential association between salivary metabolites and dental caries progression would enable the early detection and prevention of this non-communicable disease. Therefore, the aim of this study was to compare salivary biomarkers between individuals with type 2 diabetes (T2DM) with those without this disorder (ND) using 1H NMR-based metabolomics strategies. The objectives were to identify T2DM-associated biomarker signatures and their potential impact on dental caries. In addition, HbA1c and vitamin D levels were also analysed for this purpose. METHODS: Stimulated whole-mouth saliva (SWS) samples were collected from T2DM and ND (n = 30 in each case) participants randomly selected from a group of 128 participants recruited for this case-control study. All participants were advised to refrain from eating, drinking, and smoking for at least 1-2 h prior to sample collection. Following preparation, SWS supernatants underwent 1H NMR analysis at an operating frequency of 800 MHz, and the dataset acquired was analysed using a range of multivariate metabolomics techniques. RESULTS: Metabolomics analysis of data acquired demonstrated that, together with up- and downregulated blood HbA1c and vitamin D levels, key salivary discriminators between these two classifications included lactate, taurine, creatinine, α-glucose, and formate to a lesser extent. The bacterial catabolites lactate and formate were both significantly upregulated in the T2DM group, and these have previously been implicated in the pathogenesis of dental caries. Significance analysis of metabolites (SAM)-facilitated AUROC analysis yielded an 83% accuracy for this distinction. CONCLUSION: In conclusion, this study highlights the significant differences in salivary metabolites between individuals with T2DM and healthy controls. Such differences appear to be related to the development and progression of dental caries in T2DM patients.

10.
Food Res Int ; 188: 114415, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823855

RESUMEN

Several scientific studies have warned that the ingestion of dietary lipid oxidation products (LOPs) may initiate or exacerbate the development of several chronic non-communicable diseases in humans. Indeed, the constantly increasing consumption of culinary oils by larger global populations indicates the need for scientific techniques to suppress the evolution of LOPs in thermo-oxidised oils. This study employed a 600.13 MHz frequency NMR spectrometer in evaluating the effect of 10, 50, and 100 ppm concentrations of chemical compounds reported to have antioxidant properties in continuously-stirred and thermally stressed polyunsaturated fatty acid (PUFA)-rich hemp seed oil at a frying temperature of 180℃ for 180 min. Research data acquired showed that the antioxidants α- and γ-tocopherol, γ-oryzanol, ß-carotene, eugenol, resveratrol, ascorbyl palmitate, gentisic acid, and L-ascorbic acid all played a vital role in suppressing the evolution of secondary aldehydic lipid oxidation products in hemp seed oil. However, the most ineffective LOP-suppressing agent was L-lysine, an observation which may be accountable by its poor oil solubility. Nonetheless, trends deduced for compounds acting as antioxidants were mainly unique for each class of agent tested. Conversely, the antioxidant capacity of resveratrol was consistently higher, and this effect was found to be independent of its added amounts. This report provides a direct approach in developing scientific methods for the suppression of LOPs in thermo-oxidatively susceptible PUFA-rich cooking oils.


Asunto(s)
Antioxidantes , Cannabis , Calor , Peroxidación de Lípido , Aceites de Plantas , Antioxidantes/química , Aceites de Plantas/química , Cannabis/química , Peroxidación de Lípido/efectos de los fármacos , Culinaria , Semillas/química , Resveratrol/química , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/química , Espectroscopía de Resonancia Magnética , Ácido Ascórbico/química , Extractos Vegetales
11.
Front Oral Health ; 5: 1373885, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933119

RESUMEN

Introduction: Silver(I)-diammine fluoride (SDF) and silver(I)-fluoride (SF) complexes have been successfully employed for the arrest of dental caries for many years. However, to date there are very few studies available reporting on the molecular structural compositional and solution status of these agents [typically applied as highly-concentrated 38% (w/v) solutions]. Here, we explored the solution status and chemical constitution of commercially-available SDF and SF products, and secondly investigated the multicomponent interplay of these products with biomolecules present in intact human whole-mouth salivary supernatants (WMSSs) in vitro. Methods: High-resolution 19F NMR analysis was employed to explore SDF and SF product solutions, and to determine WMSS fluoride (F-) concentrations, whereas ammonia (NH3) release form SDF was tracked by 1H NMR spectroscopy. SEM and thin-film FTIR-ATR analyses were employed to explore the atomic and molecular compositions of sequentially-generated AgCl deposits and chromophoric Ag/AgCl nanoparticles (CSNPs); the time-dependent generation of the latter was followed spectrophotometrically. Results: 19F NMR spectra of aqueous SF solutions contained a very broad F- signal (Δv1/2 70 Hz), demonstrating that much of its solvated F- content was rapidly exchanging with Ag(I) on the NMR timescale, but those of SDF had a much sharper resonance, similar to that of "free" F- (4 Hz). Moreover, further NMR results revealed that a popular SDF product contained high molar excesses of both F- and NH3. Treatment of WMSSs with SDF and SF generated an off-white precipitate, which slowly developed into CSNPs at 23°C; SEM demonstrated high contents of both silver and chloride in this material (ca.1:1 atomic content ratio). FTIR-ATR analysis found that the CSNPs formed contained a range of salivary biomolecules, which appear to encapsulate the Ag/AgCl core (significant thiocyanate contents were also found). In conclusion, NMR results acquired demonstrated that SF, but not SDF, product solutions feature rapidly-exchanging F - between its "free" and Ag(I)-bound forms, and that SDF contains large excesses of both F- and its NH3 ligands. Characterised AgCl deposits and CSNPs were sequentially produced from the interactions of these complexes with WMSS biomolecules. Discussion: In view of their well-known microbicidal and cariostatic properties, the observed autobioconstruction of CSNPs involving salivary catalysis is of much therapeutic significance.

12.
Clin Oral Investig ; 17(9): 2065-78, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23494452

RESUMEN

OBJECTIVES: Oral rinse formulations containing chlorite anion (ClO(2)(-)) as an active agent exert a range of valuable oral healthcare activities. However, salivary biomolecules which chemically react with this oxidant can, at least in principle, serve as potentially significant barriers to these therapeutic properties in the oral environment. Therefore, in this investigation, we have explored the extent of ClO(2)(-) consumption by biomolecules which scavenge this agent in human salivary supernatants (HSSs) in vitro. MATERIALS AND METHODS: HSS samples were equilibrated with oral rinse formulations containing this active agent (30 s at 35 °C in order to mimic oral rinsing episodes). Differential spectrophotometric and ion-pair reversed-phase high-performance liquid chromatographic analyses were employed to determine residual ClO(2)(-) in these admixtures. RESULTS: Bioanalytical data acquired revealed the rapid consumption of ClO(2)(-) by biomolecular electron donors and/or antioxidants present in HSS samples. Mean ± 95 % confidence interval (CI) consumption levels of 7.14 ± 0.69 and 5.34 ± 0.69 % of the total ClO(2)(-) available were found for oral rinse products containing 0.10 and 0.40 % (w/v) ClO(2)(-), respectively. A mixed model analysis-of-variance performed on experimental data acquired demonstrated highly-significant differences between oral rinse ClO(2)(-) contents (p < 0.0001), trial participants (p < 0.001) and sampling days-within-participants (p < 0.001), and also revealed non-additive ClO(2)(-)-scavenging responses of participants' HSSs to increases in the oral rinse content of this oxidant (p < 0.0001). A slower, second phase of the reaction process (t (1/2) = 1.7-2.8 h) involved the oxidative consumption of salivary urate. CONCLUSIONS: These data clearly demonstrate that for recommended 30 s oral rinsing episodes performed at physiological temperature, <10 % of the total oral rinse ClO(2)(-) available is chemically and/or reductively consumed by HSS biomolecules for both oral rinse formulations investigated. CLINICAL RELEVANCE: These observations are of much clinical significance in view of the retention of these products' active agent, i.e. <10 % of ClO(2)(-) is consumed by HSS biomolecules within recommended 30 s oral rinsing episodes, and hence, the bulk of this oxyhalogen oxidant (>90 %) may effectively exert its essential microbicidal, anti-periodontal and oral malodour-neutralising actions.


Asunto(s)
Biomarcadores/análisis , Cloruros/análisis , Antisépticos Bucales , Saliva/química , Cromatografía Líquida de Alta Presión , Humanos
13.
Acta Odontol Scand ; 71(1): 223-35, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22519715

RESUMEN

BACKGROUND: A multicomponent evaluation of the oxidative consumption of salivary biomolecules by a tooth-whitening oral rinse preparation has been performed using high-resolution proton ((1)H) nuclear magnetic resonance spectroscopy (NMR). METHODS: Unstimulated human saliva samples (n = 12) were treated with aliquots of the oral rinse tested and 600 MHz (1)H NMR spectra acquired on these samples demonstrated that hydrogen peroxide (H(2)O(2)) and/or peroxodisulphate (S(2)O(8) (2-)) present in this product gave rise to the oxidative decarboxylation of the salivary electron-donor pyruvate (to acetate and CO(2)), and also oxidized methionine (a precursor to volatile sulphur compounds responsible for oral malodour), and malodourous trimethylamine to methionine sulphoxide and trimethylamine-N-oxide, respectively (reductions observed in the salivary concentrations of each biomolecular peroxide-scavenging agent were all extremely statistically significant, p < 0.005). RESULTS: Experiments conducted on chemical model systems confirmed the consumption of pyruvate by this product, and also revealed that the amino acids cysteine and methionine were oxidatively transformed to cystine and methionine sulphoxide, respectively. CONCLUSIONS: High-field (1)H NMR analysis provides much valuable molecular information regarding the fate of tooth-whitening oxidants in human saliva and permits an assessment of the mechanisms of action of oral healthcare products containing these agents. The biochemical and potential therapeutic significance of the results obtained are discussed.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Antisépticos Bucales/metabolismo , Peróxidos/metabolismo , Saliva/química , Saliva/metabolismo , Blanqueadores Dentales/metabolismo , Cisteína/metabolismo , Descarboxilación , Electrones , Humanos , Metionina/metabolismo , Metilaminas/metabolismo , Modelos Químicos , Antisépticos Bucales/química , Oxidantes/metabolismo , Oxidación-Reducción , Protones , Piruvatos/metabolismo , Blanqueadores Dentales/química
14.
Biomedicines ; 11(6)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37371729

RESUMEN

The purpose of this study was to investigate photothermal aspects of photobiomodulation therapies (PBMT) in vitro to assist in the development of safe clinical parameters with respect to higher-power devices with large surface applicators. Laser wavelengths in the range of 650 nm-1064 nm were investigated using a thermal camera. Thermographic measures of surface and sub-surface temperature variations of similar lean porcine muscle tissue samples were recorded for a series of calibrated experiments. A thermal comparison was then made between Flat-top and Gaussian beam spatial distribution devices. Outcome data were subjected to statistical analysis using an ANOVA model. Results acquired at similar parameters of irradiance indicated that the application of the 980 nm wavelength was associated with the highest rise in temperature, which decreased with other wavelengths in the order 980 > 1064 ≈ 650 >>> 810 nm (p < 5 × 10-20). All wavelengths assessed were associated with a significant temperature increase, and with the exception of 810 nm, all exceeded the threshold of a 6 °C rise within the prescribed parameter limits. Optical scanning by movement of the applied source over a relevant area was found to offer effective mitigation of these temperature increases. An extended discussion is presented, analysing the clinical significance of the study outcomes. Recommendations are made within the limits of this in vitro study in order to assist future clinical investigations.

15.
Foods ; 12(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36981180

RESUMEN

INTRODUCTION: Toxic aldehydic lipid oxidation products (LOPs) arise from the thermo-oxidative deterioration of unsaturated fatty acids present in heated culinary oils when exposed to high-temperature frying episodes, and currently these effects represent a major public health concern. OBJECTIVES: In this study, we investigated the applications of low-field (LF), benchtop NMR analysis to detect and quantify toxic aldehyde species in culinary oils following their exposure to laboratory-simulated shallow frying episodes (LSSFEs) at 180 °C. Four culinary oils of variable fatty acid (FA) composition were investigated to determine the analytical capabilities of the LF NMR instrument. Oil samples were also analysed using a medium-field (400 MHz) NMR facility for comparative purposes. RESULTS: Aldehydes were quantified as total saturated and total α,ß-unsaturated classes. The time-dependent production of α,ß-unsaturated aldehydes decreased in the order chia > rapeseed ≈ soybean > olive oils, as might be expected from their polyunsaturated and monounsaturated FA (PUFA and MUFA, respectively) contents. A similar but inequivalent trend was found for saturated aldehyde concentrations. These data strongly correlated with medium-field 1H NMR data obtained, although LF-determined levels were significantly lower in view of its inability to detect or quantify the more minor oxygenated aldehydic LOPs present. Lower limit of detection (LLOD) values for this spectrometer were 0.19 and 0.18 mmol/mol FA for n-hexanal and trans-2-octenal, respectively. Aldehydic lipid hydroperoxide precursors of aldehydic LOPs were also detectable in LF spectra. CONCLUSIONS: We therefore conclude that there is scope for application of these smaller, near-portable NMR facilities for commercial or 'on-site' quality control determination of toxic aldehydic LOPs in thermally stressed frying oils.

16.
Metabolites ; 13(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36676991

RESUMEN

This communication represents Part III of our series of reports based on the applications of human saliva as a useful and conveniently collectable medium for the discovery, identification and monitoring of biomarkers, which are of some merit for the diagnosis of human diseases. Such biomarkers, or others reflecting the dysfunction of specific disease-associated metabolic pathways, may also be employed for the prognostic pathological tracking of these diseases. Part I of this series set the experimental and logistical groundwork for this report, and the preceding paper, Part II, featured the applications of newly developed metabolomics technologies to the diagnosis and severity grading of human cancer conditions, both oral and systemic. Clearly, there are many benefits, both scientific and economic, associated with the donation of human saliva samples (usually as whole mouth saliva) from humans consenting to and participating in investigations focused on the discovery of biomolecular markers of diseases. These include usually non-invasive collection protocols, relatively low cost when compared against blood sample collection, and no requirement for clinical supervision during collection episodes. This paper is centred on the employment and value of 'state-of-the-art' metabolomics technologies to the diagnosis and prognosis of a wide range of non-cancerous human diseases. Firstly, these include common oral diseases such as periodontal diseases (from type 1 (gingivitis) to type 4 (advanced periodontitis)), and dental caries. Secondly, a wide range of extra-oral (systemic) conditions are covered, most notably diabetes types 1 and 2, cardiovascular and neurological diseases, and Sjögren's syndrome, along with a series of viral infections, e.g., pharyngitis, influenza, HIV and COVID-19. Since the authors' major research interests lie in the area of the principles and applications of NMR-linked metabolomics techniques, many, but not all, of the studies reviewed were conducted using these technologies, with special attention being given to recommended protocols for their operation and management, for example, satisfactory experimental model designs; sample collection and laboratory processing techniques; the selection of sample-specific NMR pulse sequences for saliva analysis; and strategies available for the confirmation of resonance assignments for both endogenous and exogenous molecules in this biofluid. This article also features an original case study, which is focussed on the use of NMR-based salivary metabolomics techniques to provide some key biomarkers for the diagnosis of pharyngitis, and an example of how to 'police' such studies and to recognise participants who perceive that they actually have this disorder but do not from their metabolic profiles and multivariate analysis pattern-based clusterings. The biochemical and clinical significance of these multidimensional metabolomics investigations are discussed in detail.

17.
Metabolites ; 13(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37512499

RESUMEN

Ammonia (NH3) has been shown to be a key biomarker for a wide variety of diseases, such as hepatic and chronic kidney diseases (CKD), and cancers. It also has relevance to the oral health research area, and, hence, its determination in appropriate biofluids and tissues is of much importance. However, since it contains exchangeable >N-H protons, its analysis via 1H NMR spectroscopy, which is a widely employed technique in untargeted metabolomic studies, is rendered complicated. In this study, we focused on the 1H NMR analysis of this biomarker in less invasively collected human saliva samples, and we successfully identified and quantified it as ammonium cation (NH4+) in post-collection acidulated forms of this biofluid using both the standard calibration curve and standard addition method (SAM) approaches. For this purpose, n = 27 whole mouth saliva (WMS) samples were provided by healthy human participants, and all donors were required to follow a fasting/oral environment abstention period of 8 h prior to collection. Following acidification (pH 2.00), diluted WMS supernatant samples treated with 10% (v/v) D2O underwent 1H NMR analysis (600 MHz). The acquired results demonstrated that NH4+ can be reliably determined in these supernatants via integration of the central line of its characteristic 1:1:1 intensity triplet resonance (complete spectral range δ = 6.97-7.21 ppm). Experiments performed also demonstrated that any urease-catalysed NH3 generation occurring post-sampling in WMS samples did not affect the results acquired during the usual timespan of laboratory processing required prior to analysis. Further experiments demonstrated that oral mouth-rinsing episodes conducted prior to sample collection, as reported in previous studies, gave rise to major decreases in salivary NH4+ levels thereafter, which renormalised to only 50-60% of their basal control concentrations at the 180-min post-rinsing time point. Therefore, the WMS sample collection method employed significantly affected the absolute levels of this analyte. The LLOD was 60 µmol/L with 128 scans. The mean ± SD salivary NH4+ concentration of WMS supernatants was 11.4 ± 4.5 mmol/L. The potential extension of these analytical strategies to the screening of other metabolites with exchangeable 1H nuclei is discussed, as is their relevance to the monitoring of human disorders involving the excessive generation and/or uptake of cellular/tissue material, or altered homeostasis, in NH3.

18.
J Food Drug Anal ; 31(1): 95-115, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-37224552

RESUMEN

Lipid oxidations products (LOPs) are reactive mutagenic and carcinogenic species known to be generated in thermally stressed culinary oils. Mapping the evolution of LOPs in culinary oils exposed to standard frying practices - both continuous and discontinuous thermo-oxidation - at 180 °C is vital to our understanding of these processes, and to the development of scientific solutions for their effective suppression. Modifications in the chemical compositions of the thermo-oxidised oils were analysed using a high-resolution proton nuclear magnetic resonance (1H NMR) technique. Research findings acquired showed that polyunsaturated fatty acid (PUFA)-rich culinary oils were the most susceptible to thermo-oxidation. Consistently, coconut oil, which has a very high saturated fatty acid (SFA) content, was highly resistant to the thermo-oxidative methods employed. Furthermore, continuous thermo-oxidation produced greater substantive changes in the oils evaluated than discontinuous episodes. Indeed, for 120 min thermo-oxidation durations, both continuous and discontinuous methods exerted a unique impact on the contents and levels of aldehydic LOPs formed in the oils. This report exposes daily used culinary oils to thermo-oxidation, and therefore, it permits assessments of their peroxidative susceptibilities. It also serves as a reminder to the scientific community to investigate approaches for suppressing toxic LOPs generation in culinary oils exposed to these processes, most notably those involving their reuse.


Asunto(s)
Aldehídos , Alimentos , Espectroscopía de Protones por Resonancia Magnética , Aceites , Estrés Oxidativo
19.
Metabolites ; 13(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37887404

RESUMEN

In this investigation, we outline the applications of a data mining technique known as Subgroup Discovery (SD) to the analysis of a sample size-limited metabolomics-based dataset. The SD technique utilized a supervised learning strategy, which lies midway between classificational and descriptive criteria, in which given the descriptive property of a dataset (i.e., the response target variable of interest), the primary objective was to discover subgroups with behaviours that are distinguishable from those of the complete set (albeit with a differential statistical distribution). These approaches have, for the first time, been successfully employed for the analysis of aromatic metabolite patterns within an NMR-based urinary dataset collected from a small cohort of patients with the lysosomal storage disorder Niemann-Pick class 1 (NPC1) disease (n = 12) and utilized to distinguish these from a larger number of heterozygous (parental) control participants. These subgroup discovery strategies discovered two different NPC1 disease-specific metabolically sequential rules which permitted the reliable identification of NPC1 patients; the first of these involved 'normal' (intermediate) urinary concentrations of xanthurenate, 4-aminobenzoate, hippurate and quinaldate, and disease-downregulated levels of nicotinate and trigonelline, whereas the second comprised 'normal' 4-aminobenzoate, indoxyl sulphate, hippurate, 3-methylhistidine and quinaldate concentrations, and again downregulated nicotinate and trigonelline levels. Correspondingly, a series of five subgroup rules were generated for the heterozygous carrier control group, and 'biomarkers' featured in these included low histidine, 1-methylnicotinamide and 4-aminobenzoate concentrations, together with 'normal' levels of hippurate, hypoxanthine, quinolinate and hypoxanthine. These significant disease group-specific rules were consistent with imbalances in the combined tryptophan-nicotinamide, tryptophan, kynurenine and tyrosine metabolic pathways, along with dysregulations in those featuring histidine, 3-methylhistidine and 4-hydroxybenzoate. In principle, the novel subgroup discovery approach employed here should also be readily applicable to solving metabolomics-type problems of this nature which feature rare disease classification groupings with only limited patient participant and sample sizes available.

20.
Arch Biochem Biophys ; 520(1): 51-65, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22342562

RESUMEN

High-resolution (1)H NMR spectroscopy demonstrated that addition of Co(II) ions to isolated human salivary supernatants (HSSs) gave rise to its complexation by a variety of biomolecules. The relative efficacies of these complexants/chelators in this context were classifiable by the influence of added Co(II) on their line-widths and chemical shift values, and also the added Co(II) concentration-dependence of these spectral modifications. Those which were most affected by the addition of this metal ion were lactate > formate ≈histidinate > succinate, this order reflecting the ability of these complexants to compete for the available Co(II) in terms of (1) thermodynamic equilibrium constants for the formation of their complexes and (2) their HSS concentrations. Since many of these HSS Co(II) complexants (particularly lactate, formate and histidine) serve as powerful ()OH scavengers, the results acquired indicate that any of this radical generated from the Co(II) source in such complexes via pseudo-Fenton reactions may be 'site-specifically' scavenged. The significance of these observations regarding the in vivo corrosion of cobalt-containing metal alloy dental prostheses (e.g., Co-Cr alloys), the availability of trace levels of this metal ion in human saliva, and cobalt toxicity, is discussed.


Asunto(s)
Cobalto/química , Espectroscopía de Resonancia Magnética/métodos , Saliva/química , Cobalto/análisis , Humanos , Iones , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA