RESUMEN
This paper addresses the challenging issue of achieving high spatial resolution in temperature monitoring of printed circuit boards (PCBs) without compromising the operation of electronic components. Traditional methods involving numerous dedicated sensors such as thermocouples are often intrusive and can impact electronic functionality. To overcome this, this study explores the application of ultrasonic guided waves, specifically utilising a limited number of cost-effective and unobtrusive Piezoelectric Wafer Active Sensors (PWAS). Employing COMSOL multiphysics, wave propagation is simulated through a simplified PCB while systematically varying the temperature of both components and the board itself. Machine learning algorithms are used to identify hotspots at component positions using a minimal number of sensors. An accuracy of 97.6% is achieved with four sensors, decreasing to 88.1% when utilizing a single sensor in a pulse-echo configuration. The proposed methodology not only provides sufficient spatial resolution to identify hotspots but also offers a non-invasive and efficient solution. Such advancements are important for the future electrification of the aerospace and automotive industries in particular, as they contribute to condition-monitoring technologies that are essential for ensuring the reliability and safety of electronic systems.
RESUMEN
[structure: see text] The reaction of 2,5-diphenylphospholide, first with acyl chlorides, then with tBuOK, provides a direct access to 3-acyl-2,5-diphenylphospholides via a 1H-, 2H-, 3H-phosphole equilibrium.
RESUMEN
Different isomeric forms of the amidine unit have been identified in Ph2P(E)C[NR'][NHR'] (E = S, Se; R' = iPr, Cy), using both solid- and solution-state techniques.
Asunto(s)
Guanidinas/química , Fósforo/química , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/química , Selenio/química , EstereoisomerismoRESUMEN
Phospha(III)guanidines, R2PC{NR'}{NHR'}, have been used to synthesize multimetallic compounds containing combinations of aluminum with platinum or copper, in which the main-group metal is N,N'-bound by an amidinate moiety, thereby generating a metal-functionalized phosphine that bonds to the transition metal through phosphorus.
RESUMEN
The reaction of phospholide ions with imidoyl chlorides in the presence of tBuOK gives the alpha-iminophospholides that are isolated as their trimethylstannyl derivatives. These derivatives in turn react with metal chlorides to give complexes of the title ligands. A DFT study shows that substantial electronic delocalization takes place between the imino group and the phospholyl ring in these anions. The X-ray crystal structure of one stannylphosphole shows a highly pyramidal phosphorus atom (sum of angles = ca. 280 degrees ). A tetrameric copper complex has also been structurally characterized.
RESUMEN
Spectroscopic, crystallographic, and computational studies of the substituent distribution about the "NCN" unit in a series of phospha(III)- and phospha(V)-guanidines, R(2)PC{NR'}{NHR'} and R(2)P(E)C{NR'}{NHR'} (R = Ph, Cy; R' = (i)Pr, Cy; E = S, Se), are reported. In the phosphorus(III) systems, the P-diphenyl substituted compounds are observed as only one isomer, shown by NMR spectroscopy to be the E(syn)-(alpha) configuration. In contrast, the corresponding P-dicyclohexyl derivatives exist as a mixture of E(syn)-(alpha) and Z(anti) in solution. Spectroscopic techniques are unable to determine whether the latter isomer exists as the alpha- or beta-conformer relative to rotation about the P-C(amidine)() bond; however, DFT calculations indicate a low-energy structure for the N,N'-dimethyl model complex in the beta-conformation. In their oxidized sulfo and seleno forms, the P-diphenyl compounds are present as an interconverting equilibrium mixture of the E(syn)-(beta) and Z(syn)-(beta) isomers in solution ( approximately 3:2 ratio), whereas for the P-dicyclohexyl analogues, the latter configuration (in which the nitrogen substituents are in a more sterically unfavorably cisoid arrangement about the imine double bond) is the dominant form. Intramolecular E...HN (E = S, Se) interactions are observed in solution for the Z(syn)-(beta) configuration of both P-substituted species, characterized by J(SeH) coupling in the NMR spectrum for the P(V)-seleno compounds and a bathochromic shift of the NH absorption in the infrared spectrum. An X-ray crystallographic analysis of representative Ph(2)P(E)- and Cy(2)P(E)-substituted species shows exclusively the E(syn)-(beta) configuration for the P-diphenyl substituted compounds and the Z(syn)-(beta) form for the P-dicyclohexyl derivatives, independent of the chalcogen and the nitrogen substituents. Results from a DFT analysis of model compounds fail to identify a compelling electronic argument for the observed preferences in substituent orientation, suggesting that steric factors play an important role in determining the subtle energetic differences at work in these systems.