Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(26): e2208002, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36942774

RESUMEN

Uranium extraction from natural seawater is one of the most promising routes to address the shortage of uranium resources. By combination of ligand complexation and photocatalytic reduction, porous framework-based photocatalysts have been widely applied to uranium enrichment. However, their practical applicability is limited by poor photocatalytic activity and low adsorption capacity. Herein, atomically dispersed Cu implanted UiO-66-NH2 (Cu SA@UiO-66-NH2 ) photocatalysts are prepared via ligand-assistant iced photocatalytic reduction route. N-Cu-N moiety acts as an effective electron acceptor to potentially facilitate charge transfer kinetics. By contrast, there exist Cu sub-nanometer clusters by the typical liquid phase photoreduction, resulting in a relatively low photocatalytic activity. Cu SA@UiO-66-NH2 adsorbents exhibit superior antibacterial ability and improved photoreduction conversion of the adsorbed U(VI) to insoluble U(IV), leading to a high uranium sorption capacity of 9.16 mg-U/g-Ads from natural seawater. This study provides new insight for enhancing uranium uptake by designing SA-mediated MOF photocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA