Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Fish Shellfish Immunol ; 123: 479-488, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35314333

RESUMEN

Paeonol, a naturally occurring polyphenol isolated from medical plant, has been known to exhibit anti-oxidative and anti-inflammatory effects. In order to evaluate the effect of paeonol on Carassius auratus gibelio infected by pathogenic bacteria Aeromonas hydriphila. 750 fish were randomly divided into 5 groups, which separately treated with 0.85% sterile saline (blank), A. hydriphila (negative control), A. hydriphila with paeonol (4 mg/kg, 64 mg/kg), and A. hydriphila with enrofloxacin (12 mg/kg, positive control). Fish were anaesthetized with MS-222 (100 mg/L), and samples were collected at 6 and 72 h after A. hydriphila challenge. The results showed that compared with the negative group, the survival in paeonol groups marked increased by 14.75% and 18.94%. The plasma immunoglobulin M (IgM) was notably increased, and low density lipoprotein (LDL) was significantly decreased in paeonol groups at 6 h (P < 0.05). The antioxidative enzymes catalase (CAT), total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) were significantly increased in paeonol groups at 6 h, while malondialdehyde (MDA) and myeloperoxidase (MPO) contents were lower (P < 0.05). The inflammatory related genes MyD88 and TLR-5 were significantly downregulated, and the TLR-3 was significantly increased in paeonol groups at 72 h (P < 0.05). In addition, histopathological analyses showed that the lesion in liver, spleen and caudal kidney were considerably attenuated in paeonol groups. In conclusion, paeonol could increase the survival rate, mitigate oxidative damage, inflammation, tissue lesions, and improve the immunity of gibel carp challenged with A. hydrophila.


Asunto(s)
Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Acetofenonas , Aeromonas hydrophila , Alimentación Animal/análisis , Animales , Antiinflamatorios/farmacología , Antioxidantes , Dieta , Resistencia a la Enfermedad , Proteínas de Peces/genética , Carpa Dorada
2.
J Nat Prod ; 84(12): 3161-3168, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34806369

RESUMEN

The natural products piperlongumine (1) and ligustrazine (2) have been reported to exert antiproliferative effects against various types of cancer cells by up-regulating the level of reactive oxidative species (ROS). However, the moderate activities of 1 and 2 limit their application. To improve their potential antitumor activity, novel piperlongumine/ligustrazine derivatives were designed and prepared, and their potential pharmacological effects were determined in vitro and in vivo. Among the derivatives obtained, 11 exerted more prominent inhibitory activities against proliferation of drug-sensitive/-resistant cancer cells with lower IC50 values than 1. Particularly, the IC50 value of 11 against drug-resistant Bel-7402/5-FU cells was 0.9 µM, which was about 9-fold better than that of 1 (IC50 value of 8.4 µM). Mechanistic studies showed that 11 demonstrated thioredoxin reductase (TrxR) inhibitory activity, increase of ROS levels, decrease of mitochondrial transmembrane potential levels, and occurrence of DNA damage and autophagy, in a dose-dependent manner, via regulation of DNA damage protein H2AX and autophagy-associated proteins LC3, beclin-1, and p62 in drug-resistant Bel-7402/5-FU cells. Finally, compound 11 at 5 mg/kg displayed potent antitumor activity in vivo with tumor suppression of 76% (w/w). Taken together, compound 11 may represent a promising candidate drug for the chemotherapy of drug-resistant hepatocellular carcinoma and warrant more intensive study.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Dioxolanos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Pirazinas/farmacología , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Carcinoma Hepatocelular/patología , Dioxolanos/química , Humanos , Neoplasias Hepáticas/patología , Pirazinas/química
3.
RSC Adv ; 14(37): 27354-27364, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39205930

RESUMEN

This investigation delves into the daucosterol-lecithin complex (DS-LC) and its effects on lipid homeostasis in hyperlipidemic mice. DS-LC was assessed for complexation efficiency, physicochemical properties (UV, XRD, FTIR, SEM, DSC), and its impact on organ health and serum lipid levels. The results revealed that daucosterol formed an effective complex with lecithin at a 2 : 1 ratio, producing a translucent beige DS-LC with distinctive aggregation. UV-vis spectra confirmed that daucosterol's chromophore structure remained intact in DS-LC, indicating no new compound formation. FTIR analysis identified hydrogen bonding and increased molecular association without changing lecithin peaks, highlighting specific intermolecular interactions. SEM and XRD showed that complexation transformed daucosterol into an irregular form within the lecithin matrix, forming a new phase and demonstrating a strong lecithin-daucosterol interaction. Thermal analysis suggested homogeneous daucosterol distribution due to intermolecular interactions. DS-LC treatment effectively alleviated hyperlipidemia, enhancing liver function and reducing lipid accumulation in epididymal fat. It also significantly decreased total cholesterol, triglycerides, LDL-C, and arteriosclerosis index in hyperlipidemic mice, indicating DS-LC's potential as a therapeutic agent for lipid metabolism and related metabolic disorders.

4.
Sci Rep ; 14(1): 17607, 2024 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080297

RESUMEN

In this study, the removal effect of a new MOF-on MOF adsorbent based on Cu-Co bimetallic organic frameworks on tetracycline antibiotics (TCs) in water system was studied. The adsorbent (Cu-MOF@Co-MOF) were synthesized by solvothermal and self-assembly method at different concentrations of Co2+/Cu2+. The characterization results of SEM, XRD, XPS, FTIR and BET indicated that the MOF-on MOF structure of Cu-MOF@Co-MOF exhibited the best recombination and physicochemical properties when the molar ratio of Co2+: Cu2+ is 5:1. In addition, the Cu-MOF@Co-MOF have a high specific surface area and bimetallic clusters, which can achieve multi-target synergistic adsorption of TCs. Based on above advantages, Cu-MOF@Co-MOF provided a strong affinity and could efficiently adsorb more than 80% of pollutants in just 5 to 15 min using only 10 mg of the adsorbent. The adsorption capacity of tetracycline and doxycycline was 434.78 and 476.19 mg/g, respectively, showing satisfactory adsorption performance. The fitting results of the experimental data were more consistent with the Langmuir isotherm model and pseudo-second-order kinetic model, indicating that the adsorption process of TC and DOX occurred at the homogeneous adsorption site and was mainly controlled by chemisorption. Thermodynamic experiments showed that Cu-MOF@Co-MOF was thermodynamically advantageous for the removal of TCs, and the whole process was spontaneous. The excellent adsorption capacity and rapid adsorption kinetics indicate the prepared MOF-on MOF adsorbent can adsorb TCs economically and quickly, and have satisfactory application prospects for removing TCs in practical environments. The results of the study pave a new way for preparing novel MOFs-based water treatment materials with great potential for efficient removal.


Asunto(s)
Antibacterianos , Cobre , Estructuras Metalorgánicas , Tetraciclina , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cobre/química , Estructuras Metalorgánicas/química , Antibacterianos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Tetraciclina/química , Tetraciclina/aislamiento & purificación , Purificación del Agua/métodos , Cobalto/química , Cinética
5.
Artículo en Inglés | MEDLINE | ID: mdl-35378299

RESUMEN

Paeonol (2'-hydroxy-4'-methoxyacetophenone) is a phenol that exhibits antioxidant and anti-inflammatory capabilities. In this study, the underlying mechanism of paeonol against LPS-induced oxidative stress and inflammatory responses in gibel carp was investigated. Three hundred healthy gibel carp were divided into five groups (n = 9), intraperitoneally injected with LPS and thereafter treated with paeonol (16 mg/kg and 64 mg/kg). Fish were anesthetized with MS-222 (100 mg/L), and samples were collected at 72 h to investigate plasma biochemical indexes, liver histopathology, antioxidant enzymatic activity, and TLR receptor-related gene expression. Fish injected with LPS (20 mg/kg) exhibited significantly increased plasma aminotransferase (ALT), aminotransferase (AST), lactate dehydrogenase (LDH), glucose (GLU), diamine oxidase (DAO), and alkaline phosphatase (ALP) levels (P < 0.05). In addition, LPS challenge significantly enhanced myeloperoxidase (MPO) and malondialdehyde (MDA) contents, whereas those of catalase (CAT) and glutathione peroxidase (GSH-Px) decreased (P < 0.05). However, treatment with paeonol attenuated these LPS-induced changes (P < 0.05). The mRNA expression of TLR4, TIRAP, MyD88, TRAF6, NF-κB, TNF-α, IL-1ß, and IL-8, which were activated by LPS challenge (P < 0.05), were downregulated by paeonol. Additionally, histopathological examination demonstrated that paeonol alleviates LPS-induced hepatic tissue lesions in fish. Taken together, the results suggest that paeonol mitigates LPS-induced liver oxidative stress and inflammation in gibel carp.


Asunto(s)
Carpa Dorada , Lipopolisacáridos , Acetofenonas , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Carpa Dorada/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Transaminasas
6.
Food Funct ; 12(18): 8411-8424, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34369540

RESUMEN

The alpha-amylase inhibitory effect of daucosterol purified from the peel of Chinese water chestnut (CWC), a common Chinese vegetable, was assessed. The alpha-amylase inhibitory properties were elucidated by enzyme inhibition, fluorescence quenching and molecular docking experiments. It was found that three saponins from CWC peel exhibited potent inhibitory activity on alpha-amylase and daucosterol was found to be the main inhibitory factor against alpha-amylase with a mixed-type mode. Strong fluorescence quenching of alpha-amylase was observed under static fluorescence quenching with hydrophobic interactions with daucosterol. Molecular docking revealed that the conformation of daucosterol in the high-affinity sites I and II of alpha-amylase was optimum, and hydrophobic interactions were produced by daucosterol aglycone, and hydrogen bonding by the ß-D-glucopyranosyl residue. Ingested daucosterol suppressed the elevation of blood glucose levels through inhibition of alpha-amylase in the small intestine in starch-loaded mice. This study provides data supporting the potential benefit of daucosterol from CWC peel in the treatment of diabetes.


Asunto(s)
Glucemia/efectos de los fármacos , Eleocharis/química , Sitoesteroles/farmacología , alfa-Amilasas/antagonistas & inhibidores , Animales , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Periodo Posprandial , Conformación Proteica , Sitoesteroles/química , Relación Estructura-Actividad , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
7.
RSC Adv ; 11(25): 15400-15409, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424054

RESUMEN

The inhibitory properties towards α-glucosidase in vitro and elevation of postprandial glycemia in mice by the saponin constituent from Eleocharis dulcis peel were evaluated for the first time. Three saponins were isolated by silica gel and HPLC, identified as stigmasterol glucoside, campesterol glucoside and daucosterol by NMR spectroscopy. Daucosterol presented the highest content and showed the strongest α-glucosidase inhibitory activity with competitive inhibition. Static fluorescence quenching of α-glucosidase was caused by the formation of the daucosterol-α-glucosidase complex, which was mainly derived from hydrogen bonds and van der Waals forces. Daucosterol formed 7 hydrogen bonds with 4 residues of the active site and produced hydrophobic interactions with 3 residues located at the exterior part of the binding pocket. The maltose-loading test results showed that daucosterol inhibited elevation of postprandial glycemia in ddY mice. This suggests that daucosterol from Eleocharis dulcis peel can potentially be used as a food supplement for anti-hyperglycemia.

8.
Food Funct ; 12(19): 9503, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34606542

RESUMEN

Correction for 'Inhibition and interactions of alpha-amylase by daucosterol from the peel of Chinese water chestnut (Eleocharis dulcis)' by Yipeng Gu et al., Food Funct., 2021, DOI: 10.1039/D1FO00887K.

9.
Chem Cent J ; 12(1): 30, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29541871

RESUMEN

BACKGROUND: Preservative effect of melanin-free extract of Sepia esculenta ink (MFESI) on Sparus latus fillet has been verified in our previous work. This study aims to further approach the mechanism of MFESI for extending the shelf-life of fish fillet during cold storage. Tilapia fillets were treated with different dosage of MFESI (0, 15, 25 and 35 mg/ml) and packed with preservative film for succedent cold-storage at 4 °C for scheduled time. Contents of total volatile basic nitrogen and sulfydryl and carbanyl groups were measured for evaluating protein oxidation. Malondialdehyde contents were measured for estimating lipid peroxidation and loss of water was used to determine water-holding capacity of fillet. RESULTS: The data indicated that MFESI not only possessed certain degree of antioxidant capacity in vitro, also lengthened shelf-life of tilapia fillet in cold-storage condition. Apart from 15 mg/ml, both 25 and 35 mg/ml of MFESI obviously prevented lipid and protein from oxidation and reduced loss of water from tilapia fillets, and the latter was more effective than the former. CONCLUSION: MFESI can repress lipid peroxidation and protein oxidation and reduce water loss, maintain the tilapia fillets quality and, thus, it could be an effective and natural preservative for extending the shelf-life of tilapia fillets during cold storage.

10.
Iran J Basic Med Sci ; 20(11): 1194-1199, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29299195

RESUMEN

OBJECTIVES: The aim of this study was to explore the effects of Squid ink polysaccharide (SIP) on prevention of autophagy and oxidative stress induced by cyclophosphamide (CP) in Leydig cells of mice. MATERIALS AND METHODS: Examination of reproductive organ exponents, abnormal sperm rate, activities of superoxide dismutase (SOD), catalase (CAT), contents of malondialdehyde (MDA), and histological structure were performed to detect the optimal dose of SIP against oxidative stress damage in vivo, and autophagy-associated protein LC3 and Beclin-1 were examined by immunofluorescence, and their expression was detected by Western blot analysis. Leydig cells ultrastructural changes were observed by transmission fluorescent microscope. RESULTS: SIP significantly inhibited sperm aberration, histological structure and injury of seminiferous tubules caused by CP, as well as the antioxidant activity of SOD and CAT were increased; contents of MDA were decreased. The optimal dose of SIP for prevention of oxidative stress injury by CP was 80 mg/kg. In addition, LC3 and Beclin-1 fluorescent granules were much less in the Leydig cell layer after treatment via SIP compared with the CP-treated group, and the expression levels of LC3 and Beclin-1 were also decreased. Furthermore, characteristics of cell autophagy such as mitochondrial swelling, autophagic vacuoles, and chromatin pyknosis were observed in CP-treated Leydig cells, but SIP could effectively weaken injury of Leydig cell ultrastructure by CP. CONCLUSION: SIP, as an antioxidant, prevents the cytoskeleton damage through up-regulation antioxidant capacity and inhibition autophagy caused by CP.

11.
Exp Ther Med ; 14(6): 5889-5895, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29285137

RESUMEN

The aim of this study was to determine the mechanisms driving the protective effects of squid ink polysaccharide (SIP) against cyclophosphamide (CP)-induced testicular damage, focusing on germ cells. In the testes of mice exposed to CP and/or SIP, the present study examined the levels of reactive oxygen species (ROS) and malondialdehyde, activity of superoxide dismutase levels, protein expression levels of B-cell lymphoma 2 (Bcl2), Bcl2-associated X protein (Bax), and total Caspase 3, activation of p-p38 and p-Akt proteins, and tissue morphology. The findings indicated that CP induced ROS production and oxidative stress, resulting in testicular damage. However, under administration of SIP, oxidative stress was impaired and the testicular toxicity induced by CP was weakened, which implied that SIP may have an important role in preventing chemotherapeutic damage to the male reproductive system via promoting antioxidant ability. Furthermore, the altered expression levels, including the upregulation of Bax and Caspase 3, downregulation of Bcl-2 and the increased Bax/Bcl-2 ratio, indicated that apoptosis occurred in CP exposed testes of mice; however, the alterations were reversed in mice treated with SIP. Moreover, in CP-exposed testes, p38 and Akt proteins were significantly phosphorylated (P<0.05), whereas in the testes of mice co-treated with SIP and CP, phosphorylation of the two proteins was inhibited, demonstrating that the two signalling pathways participated in the regulative processes of the deleterious effects caused by CP, and the preventive effects SIP mediated.

12.
Carbohydr Polym ; 163: 270-279, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28267506

RESUMEN

In our recent reports, a squid ink polysaccharide (SIP) was found having preventive activity against cyclophosphamide induced damage in mouse testis and ovary. Here we further reveal the regulative mechanism of SIP against chemical toxicity on testis. Leydig cells exposed to acrolein (ACR) underwent apoptosis at 12h and 24h. Before apoptosis, cells occurred autophagy that was confirmed by high autophagic rate and Beclin-1 protein content at 3h. PI3K/Akt and p38 MAPK signal pathways involved in the regulatory mechanisms. These outcomes of ACR were recovered completely by SIP, which was demonstrated by attenuated disruption of redox equilibrium and increased testosterone production, through suppressing ACR-caused autophagy and apoptosis regulated by PI3K/Akt and p38 MAPK signal pathways in Leydig cells. Summarily, autophagy occurred before apoptosis caused by ACR-activated p38 MAPK and PI3K/Akt pathways were blocked by SIP, resulting in survival and functional maintenance of Leydig cells.


Asunto(s)
Apoptosis , Autofagia , Glicosaminoglicanos/farmacología , Células Intersticiales del Testículo/efectos de los fármacos , Sepia/química , Acroleína , Animales , Células Cultivadas , Masculino , Ratones , Transducción de Señal
13.
J Agric Food Chem ; 64(28): 5759-66, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27337058

RESUMEN

On the basis of our findings about chemo-preventive roles of squid ink polysaccharide and the well-known toxicity of cyclophosphamide (CP) on female gonad, this research investigated the protective effects of a novel polysaccharide from Sepia esculenta ink (SEP) on the ovarian failure resulting from CP, as well as the action mechanisms underpinning this. The results indicated that CP destroyed the ovaries of mice which caused depletion of various follicles, and led to a reduction in estradiol content, increases in FSH and LH contents in sera, decreases in ovary and uterus masses and their relative mass ratios, disruption of the ultrastructure of granulosa cells, as well as induction of apoptosis and autophagy via p38 MAPK and PI3K/Akt signaling pathways. The phenomenon resulted in ovarian failure. However, SEP exposure altered the negative effects completely. The data indicated that SEP can effectively prevent ovarian failure CP caused in mice by inhibiting the p38 MAPK signaling pathway and activating the PI3K/Akt signaling pathway as regulated by CP. SEP was a novel polysaccharide from Sepia esculenta ink with a unique primary structure mainly composed of GalN and Ara that accounted for almost half of all monosaccharides: their ratio was nearly one-to-one. Besides, the polysaccharide contained a small number of Fuc and tiny amounts of Man, GlcN, GlcA, and GalA.


Asunto(s)
Antineoplásicos Alquilantes/efectos adversos , Ciclofosfamida/efectos adversos , Pigmentos Biológicos/administración & dosificación , Polisacáridos/administración & dosificación , Insuficiencia Ovárica Primaria/prevención & control , Sepia/química , Animales , Apoptosis , Estradiol/metabolismo , Femenino , Humanos , Masculino , Ratones , Ovario/efectos de los fármacos , Ovario/metabolismo , Pigmentos Biológicos/química , Polisacáridos/química , Insuficiencia Ovárica Primaria/etiología , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/fisiopatología
14.
Iran J Basic Med Sci ; 19(12): 1292-1298, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28096961

RESUMEN

OBJECTIVES: This paper aims to investigate synergistic inhibition of polysaccharide from Sepia esculenta ink (SIP), a newly isolated marine polysaccharide in our laboratory, on breast cancer MDA-MB-231 cells exposed to cisplatin. MATERIALS AND METHODS: Cell viability of MDA-MB-231 cells was determined by CCK 8 assay. Median-effect concentration was analyzed using Chou-Talalay method that was also subjected to determine cell inhibition ratio and combined index, as well as interaction between SIP and cisplatin. Proliferation and migration abilities were detected with plate colony formation assay and cell wound scratch assay, respectively. Expression of MMP-2 and MMP-9 proteins was measured with Western blot assay. RESULTS: Data showed that SIP not only suppressed proliferation and migration of MDA-MB-231 cells, and expression of MMP-2 and MMP-9 proteins, also promoted inhibition of cisplatin on proliferation, migration and MMPs expression of MDA-MB-231 cells, which indicates synergy inhibition of drug combination of SIP and cisplatin on breast cancer cells. The median-effect concentrations of cisplatin and SIP were 4.9 and 1659.6 µg/ml, respectively. Whereas the concentration of combination drug was 158.5 µg/ml. The data indicated that drug combination can decrease dosages of the two single agents, especially the usual dosage of cisplatin. CONCLUSION: This research demonstrated that SIP repressed proliferation and metastasis of MDA-MB-231 cells and promoted anticancer effect of cisplatin on the breast cancer cells. The data suggested that SIP is a potential natural drug that can be used as an auxiliary medicine alongside chemotherapy in treating breast cancer.

15.
Iran J Basic Med Sci ; 18(8): 827-31, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26557973

RESUMEN

OBJECTIVES: Cyclophosphamide (CP) toxicity on testis was hampered by squid ink polysaccharide (SIP) via restoration of antioxidant ability in our previous investigations. This study investigated roles of Nrf2/ARE signal pathway in testis of treated mice. MATERIALS AND METHODS: Male Kunming mice were employed to undergo treatment with SIP and/or CP. Protein levels of Nrf2, keap-1, histone deacetylase 2 (HDAC2), quinone oxidoreductase 1 (NQO-1), and heme oxygenase 1 (HO-1) and phosphorylation level of protein kinase C (PKC) in testis were evaluated by Western blotting. RESULTS: Data showed that SIP elevated expressions of NQO-1 and HO-1 genes, two downstream target molecules of Nrf2, via activating Nrf2 to play preventive roles on CP-treated testis, and further discovered that upstream regulators of Nrf2, keap-1, HDAC2, and PKC, were concerned with the regulation of Nrf2. CONCLUSION: These results suggest that SIP could effectively weaken CP-associated testicular damage via Nrf2/ARE signal pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA