Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(46): 25431-25439, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37955662

RESUMEN

Reversible Pickering emulsions, achieved by switchable, interfacially active colloidal particles, that enable on-demand emulsification/demulsification or phase inversion, hold substantial promise for biphasic catalysis, emulsion polymerization, cutting fluids, and crude oil pipeline transportation. However, particles with such a responsive behavior usually require complex chemical syntheses and surface modifications, limiting their extensive use. Herein, we report a simple route to generate emulsions that can be controlled and reversibly undergo phase inversion. The emulsions are prepared and stabilized by the interfacial assembly of polyoxometalate (POM)-polymer, where their electrostatic interaction at the interface is dynamic. The wettability of the POMs that dictates the emulsion type can be readily regulated by tuning the number of polymer chains bound to POMs, which, in turn, can be controlled by varying the concentrations of both components and the water/oil ratio. In addition, the number of polymer chains anchored to the POMs can be varied by controlling the number of negative charges on the POMs through an in situ redox reaction. As such, a reversible inversion of the emulsions can be triggered by switching between exposure to ultraviolet light and the introduction of oxygen. Combining the functions of POM itself, a cyclic interfacial catalysis system was realized. Inversion of the emulsion also affords a pathway to high-internal-phase emulsions. The diversity of the POMs, the polymers, and the responsive switching groups open numerous new, simple strategies for designing a wide range of responsive soft matter for cargo loading, controlled release, and delivery in biomedical and engineering applications without time-consuming particle syntheses.

2.
Carbohydr Polym ; 199: 390-396, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30143143

RESUMEN

Cellulose nanocrystal (CNC) with renewability, biodegradability, and nanoscale size was used as the rough structure component instead of inorganic nanoparticles to fabricate renewable and degradable superhydrophobic cotton fabric via a dip-coating method with cured epoxidized oil resin (CESO) as the binder. The superhydrophobic cotton fabric could selectively absorb oil from oily water and could separate various oil/water mixture very efficiently with separation efficiency higher than 98%. The superhydrophobic cotton fabric showed excellent stability, making it reusable for several times without lowering separation efficiency. Moreover, the superhydrophobic cotton fabric exhibited excellent solvent and chemical resistances. Furthermore, the superhydrophobic cellulosic fabric was degradable with weight loss of 14.4 wt% after hydrolytic degradation in phosphate buffer solution (pH 7.4) at 37 °C for 10 weeks. The superhydrophobic cotton fabric may exhibit great viability as sustainable and degradable alternative to traditional nonrenewable and non-degradable superhydrophobic materials in oil/water separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA