Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 48(11): 2865-2868, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37262230

RESUMEN

Optical bistability (OB) of Rydberg atoms provides a new, to the best of our knowledge, platform for studying nonequilibrium physics and a potential resource for precision metrology. To date, the observation of Rydberg OB has been limited in free space. Here, we explore cavity-enhanced Rydberg OB with a thermal cesium vapor cell. The signal of Rydberg OB in a cavity is enhanced by more than one order of magnitude compared with that in free space. The slope of the phase transition signal at the critical point is enhanced more than 10 times that without the cavity, implying an enhancement of two orders of magnitude in the sensitivity for Rydberg-based sensing and metrology.

2.
Phys Rev Lett ; 130(17): 173601, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172253

RESUMEN

We experimentally demonstrate strong coupling between a one-dimensional (1D) single-atom array and a high-finesse miniature cavity. The atom array is obtained by loading single atoms into a 1D optical tweezer array with dimensions of 1×11. Therefore, a deterministic number of atoms is obtained, and the atom number is determined by imaging the atom array on a CCD camera in real time. By precisely controlling the position and spacing of the atom array in the high finesse Fabry-Perot cavity, all the atoms in the array are strongly coupled to the cavity simultaneously. The vacuum Rabi splitting spectra are discriminated for deterministic atom numbers from 1 to 8, and the sqrt[N] dependence of the collective enhancement of the coupling strength on atom number N is validated at the single-atom level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA