Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Dis ; 108(5): 1382-1390, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38115565

RESUMEN

Postharvest fruit rot caused by pathogens is a serious problem in the pear industry. This study investigated the fungal diversity and main pathogens and identified a new pathogen in the stored 'Huangguan' pear (Pyrus bretschneideri Rehd.), the dominant pear variety in northern China. We sampled 20 refrigeration houses from five main producing regions in Hebei Province and used Illumina sequencing technology to detect the fungal composition. Alternaria (56.3%) was the most abundant fungus, followed by Penicillium (9.2%) and Monilinia (6.2%). We also isolated and identified nine strains of Alternaria and four strains of Penicillium. Moreover, we observed a new postharvest fruit disease in 'Huangguan' pear caused by Stemphylium eturmiunum, which was confirmed by phylogenetic analysis by combining the sequences of three conserved genes, including internal transcribed spacer, gapdh, and calmodulin. This study marks the first documentation of S. eturmiunum causing fruit rot in 'Huangguan' pears, offering valuable insights for identifying and controlling this newly identified postharvest disease.


Asunto(s)
Frutas , Filogenia , Enfermedades de las Plantas , Pyrus , Pyrus/microbiología , Enfermedades de las Plantas/microbiología , China , Frutas/microbiología , Penicillium/genética , Penicillium/aislamiento & purificación , Hongos/genética , Hongos/clasificación , Hongos/fisiología , Hongos/aislamiento & purificación , Alternaria/genética , Alternaria/fisiología , Biodiversidad
2.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982404

RESUMEN

'Huangguan' pear (Pyrus bretschneideri Rehd) fruit is susceptible to cold, characterized by developing peel browning spots (PBS) during cold storage. Additionally, ethylene pretreatment reduces chilling injury (CI) and inhibits PBS occurrence, but the mechanism of CI remains unclear. Here, we deciphered the dynamic transcriptional changes during the PBS occurrence with and without ethylene pretreatment via time-series transcriptome. We found that ethylene suppressed the cold-signaling gene expression, thereby decreasing the cold sensitivity of the 'Huangguan' fruit. Moreover, the "Yellow" module closely correlated with PBS occurrence was identified via weighted gene co-expression network analysis (WGCNA), and this module was related to plant defense via Gene Ontology (GO) enrichment analysis. Local motif enrichment analysis suggested that the "Yellow" module genes were regulated by ERF and WRKY transcription factors. Functional studies demonstrated that PbWRKY31 has a conserved WRKY domain, lacks transactivation activity, and localizes in the nucleus. PbWRKY31-overexpressed Arabidopsis were hypersensitive to cold, with higher expression levels of cold signaling and defense genes, suggesting that PbWRKY31 participates in regulating plant cold sensitivity. Collectively, our findings provide a comprehensive transcriptional overview of PBS occurrence and elucidate the molecular mechanism by which ethylene reduces the cold sensitivity of 'Huangguan' fruit as well as the potential role of PbWRKY31 in this process.


Asunto(s)
Pyrus , Transcriptoma , Pyrus/genética , Pyrus/metabolismo , Etilenos/farmacología , Etilenos/metabolismo , Perfilación de la Expresión Génica , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frío
3.
Plants (Basel) ; 13(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38498491

RESUMEN

The 'Huangguan' pear is one of the high-quality pear cultivars produced in China. However, the bagged fruit of the 'Huangguan' pear often suffers from peel browning spots after rain during their mature period. In this study, in an effort to discover the impact of bagging treatments on the occurrence of peel browning spots and fruit quality, fruits were covered by single-layer, two-layer, or triple-layer paper bags six weeks after reaching full bloom. The results showed that the bagged fruits were characterized by smooth surfaces and reduced lenticels compared with the unbagged ones. The unbagged and the two-layer bagged fruits had yellow/green peels, while the single- and triple-layer bagged ones had yellow/white peels. Compared with the unbagged fruits, the bagged fruits had higher vitamin C (Vc) contents and values of peel color indexes L and a and lower soluble solid contents (SSCs), titratable acid (TA) contents, absorbance index differences (IAD), and b values. Additionally, the triple-layer bagged group was superior to other groups in terms of fruit quality, but it also had the maximum incidence of peel browning spots. Before and after the appearance of peel browning spots, the bagged fruits had smoother and thinner cuticles compared with the unbagged ones. Furthermore, the triple-layer bagged fruits had minimum lignin contents and maximum phenolic contents in their peels, with minimum activity of lignin synthesis-related enzymes such as phenylalanine ammonia lyase (PAL), peroxidase (POD), and polyphenol oxidase (PPO), as well as minimum expressions of relevant genes such as cinnamyl alcohol dehydrogenase (CAD), cinnamoyl CoA reductase (CCR), 4-coumarate: coenzyme A ligase (4CL6), and cinnamate 4-hydroxylase (C4H1). It was deduced that POD activity and the relative expressions of CAD9, CCR3, CCR4, and CCR5 may play key roles in the occurrence of peel browning spots. In summary, lignin synthesis affected the incidence of peel browning spots in bagged 'Huangguan' pears. This study provides a theoretical basis for understanding the incidence of peel browning spots in 'Huangguan' pears.

4.
Front Microbiol ; 12: 729014, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512605

RESUMEN

Pathogen-induced decay is one of the most common causes of fruit loss, resulting in substantial economic loss and posing a health risk to humans. As an ethylene action inhibitor, 1-methylcyclopropene (1-MCP) can significantly reduce fruit decay, but its effect on fruit pathogens remains unclear. Herein, the change in microbial community structure was analyzed using the high-throughput sequencing technology, and characteristics related to fruit quality were determined after 1-MCP (1.0 M l L-1) treatment in "Doyenne du Comiceis" pear fruit during storage at ambient temperature. Overall, 1-MCP was highly effective in reducing disease incidence and induced multiple changes of the fungal and bacterial microbiota. At day 15, the microbial diversity of fungi or bacteria was reduced significantly in the control fruit (non-treated with 1-MCP), which had the most severe decay incidence. For fungi, in addition to Alternaria being the most abundant in both 1-MCP treatment (59.89%) and control (40.18%), the abundances of Botryosphaeria (16.75%), Penicillium (8.81%), and Fusarium (6.47%) increased significantly with the extension of storage time. They became the primary pathogens to cause fruit decay in control, but they were markedly decreased in 1-MCP treatment, resulting in reduced disease incidence. For bacteria, the abundance of Gluconobacter (50.89%) increased dramatically at day 15 in the control fruit, showing that it also played a crucial role in fruit decay. In addition, Botryosphaeria, Fusarium fungi, and Massilia, Kineococcus bacteria were identified as biomarkers to distinguish 1-MCP treatment and control using Random Forest analysis. The redundancy analysis (RDA) result showed that the amount of Botryosphaeria, Penicillium, and Fusarium were positively correlated with disease incidence and respiration rate of pear fruits while negatively correlated with fruit firmness. This investigation is the first comprehensive analysis of the microbiome response to 1-MCP treatment in post-harvest pear fruit, and reveals the relationship between fruit decay and microbial composition in pear fruit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA