Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 31(19): 31051-31060, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710633

RESUMEN

AlGaAs-on-insulator (AlGaAs-OI) has recently emerged as a promising platform for nonlinear optics at the nanoscale. Among the most remarkable outcomes, second-harmonic generation (SHG) in the visible/near infrared spectral region has been demonstrated in AlGaAs-OI nanoantennas (NAs). In order to extend the nonlinear frequency generation towards the short wave infrared window, in this work we propose and demonstrate via numerical simulations difference frequency generation (DFG) in AlGaAs-OI NAs. The NA geometry is finely adjusted in order to obtain simultaneous optical resonances at the pump, signal and idler wavelengths, which results in an efficient DFG with conversion efficiencies up to 0.01%. Our investigation includes the study of the robustness against random variations of the NA geometry that may occur at fabrication stage. Overall, these outcomes identify what we believe to be a new potential and yet unexplored application of AlGaAs-OI NAs as compact devices for the generation and control of the radiation pattern in the near to short infrared spectral region.

2.
Opt Express ; 27(17): 24072-24081, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31510301

RESUMEN

We experimentally demonstrate a means to selectively enhance wavelength conversion of WDM channels on a 100 GHz grid exploiting nonlinear effects between the spatial modes of a few mode fiber. The selectivity of parametric gain is obtained by dispersion design of the fiber such that the inverse group velocity curves of the participating modes are parallel and their dispersion is suitably large. We describe both theoretically and experimentally the observed dependence of the idler gain profile on pump mode (quasi) degeneracy.

3.
Opt Lett ; 41(6): 1110-3, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26977646

RESUMEN

We theoretically and experimentally investigate the design of a high-repetition rate source delivering well-separated optical pulses due to the nonlinear compression of a dual-frequency beat signal within a cavity-less normally dispersive fiber-based setup. This system is well described by a set of two coupled nonlinear Schrödinger equations for which the traditional normally dispersive defocusing regime is turned in a focusing temporal lens through a degenerated cross-phase modulation process (XPM). More precisely, the temporal compression of the initial beating is performed by the combined effects of normal dispersion and XPM-induced nonlinear phase shift provided by an intense beat signal on its weak out-of-phase replica co-propagating with orthogonal polarizations. This adiabatic reshaping process allows us to experimentally demonstrate the generation of a 40 GHz well-separated 3.3 ps pulse train at 1550 nm in a 5 km long normally dispersive fiber.

4.
Opt Lett ; 39(18): 5309-12, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26466258

RESUMEN

We propose and analyze a novel all-optical fiber polarization scrambler based on the transfer (via the Kerr effect) of the intensity fluctuations of an incoherent pump beam into polarization fluctuations of a frequency-shifted signal beam, copropagating in a randomly birefringent telecom fiber. Optimal signal polarization scrambling results whenever the input signal and pump beams have nearly orthogonal states of polarization. The nonlinear polarization scrambler may operate on either cw or high-bit-rate pulsed signals.

5.
Opt Lett ; 38(12): 2029-31, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23938966

RESUMEN

Nonlinear mode coupling among two beams of different wavelength that copropagate in a bimodal highly birefringent optical fiber may lead to the effect of modal attraction. Under such circumstances, the modal distribution of light at a pump wavelength is replicated at the signal wavelength, nearly irrespective of the input mode excitation conditions of the signal.

6.
Nat Commun ; 14(1): 7704, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001059

RESUMEN

Novel fundamental notions helping in the interpretation of the complex dynamics of nonlinear systems are essential to our understanding and ability to exploit them. In this work we predict and demonstrate experimentally a fundamental property of Kerr-nonlinear media, which we name mode rejection and takes place when two intense counter-propagating beams interact in a multimode waveguide. In stark contrast to mode attraction phenomena, mode rejection leads to the selective suppression of a spatial mode in the forward beam, which is controlled via the counter-propagating backward beam. Starting from this observation we generalise the ideas of attraction and rejection in nonlinear multimode systems of arbitrary dimension, which paves the way towards a more general idea of all-optical mode control. These ideas represent universal tools to explore novel dynamics and applications in a variety of optical and non-optical nonlinear systems. Coherent beam combination in polarisation-maintaining multicore fibres is demonstrated as example.

7.
Opt Lett ; 33(22): 2662-4, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19015701

RESUMEN

We study light propagation in nanoscale periodic structures composed of dielectric and metal in the visible range. We demonstrate that diffraction can be tailored both in magnitude and in sign by varying the geometric features of the waveguides. Diffraction management on a subwavelength scale is demonstrated by numerical solution of Maxwell equations in the frequency domain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA