Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Neurosci ; 42: 337-364, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-30939101

RESUMEN

Cerebellar neuroscience has undergone a paradigm shift. The theories of the universal cerebellar transform and dysmetria of thought and the principles of organization of cerebral cortical connections, together with neuroanatomical, brain imaging, and clinical observations, have recontextualized the cerebellum as a critical node in the distributed neural circuits subserving behavior. The framework for cerebellar cognition stems from the identification of three cognitive representations in the posterior lobe, which are interconnected with cerebral association areas and distinct from the primary and secondary cerebellar sensorimotor representations linked with the spinal cord and cerebral motor areas. Lesions of the anterior lobe primary sensorimotor representations produce dysmetria of movement, the cerebellar motor syndrome. Lesions of the posterior lobe cognitive-emotional cerebellum produce dysmetria of thought and emotion, the cerebellar cognitive affective/Schmahmann syndrome. The notion that the cerebellum modulates thought and emotion in the same way that it modulates motor control advances the understanding of the mechanisms of cognition and opens new therapeutic opportunities in behavioral neurology and neuropsychiatry.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Emociones/fisiología , Neurociencias , Animales , Encéfalo/patología , Ataxia Cerebelosa/fisiopatología , Enfermedades Cerebelosas/fisiopatología , Humanos , Neurociencias/métodos
2.
Cerebellum ; 23(2): 802-832, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37428408

RESUMEN

Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.


Asunto(s)
Trastorno Depresivo Mayor , Adulto , Humanos , Anciano , Estudios Transversales , Consenso , Calidad de Vida , Cerebelo/patología , Envejecimiento , Imagen por Resonancia Magnética/métodos
3.
Cerebellum ; 22(1): 26-36, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35023065

RESUMEN

Neuroimaging studies have demonstrated aberrant structure and function of the "cognitive-affective cerebellum" in major depressive disorder (MDD), although the specific role of the cerebello-cerebral circuitry in this population remains largely uninvestigated. The objective of this study was to delineate the role of cerebellar functional networks in depression. A total of 308 unmedicated participants completed resting-state functional magnetic resonance imaging scans, of which 247 (148 MDD; 99 healthy controls, HC) were suitable for this study. Seed-based resting-state functional connectivity (RsFc) analysis was performed using three cerebellar regions of interest (ROIs): ROI1 corresponded to default mode network (DMN)/inattentive processing; ROI2 corresponded to attentional networks, including frontoparietal, dorsal attention, and ventral attention; ROI3 corresponded to motor processing. These ROIs were delineated based on prior functional gradient analyses of the cerebellum. A general linear model was used to perform within-group and between-group comparisons. In comparison to HC, participants with MDD displayed increased RsFc within the cerebello-cerebral DMN (ROI1) and significantly elevated RsFc between the cerebellar ROI1 and bilateral angular gyrus at a voxel threshold (p < 0.001, two-tailed) and at a cluster level (p < 0.05, FDR-corrected). Group differences were non-significant for ROI2 and ROI3. These results contribute to the development of a systems neuroscience approach to the diagnosis and treatment of MDD. Specifically, our findings confirm previously reported associations between MDD, DMN, and cerebellum, and highlight the promising role of these functional and anatomical locations for the development of novel imaging-based biomarkers and targets for neuromodulation therapies. ClinicalTrials.gov TRN: NCT01655706; Date of Registration: August 2nd, 2012.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Imagen por Resonancia Magnética/métodos , Cerebelo/diagnóstico por imagen , Mapeo Encefálico , Neuroimagen , Vías Nerviosas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
4.
Cerebellum ; 21(6): 1061-1072, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34741753

RESUMEN

Gradient-based analyses have contributed to the description of cerebellar functional neuroanatomy. More recently, functional gradients of the cerebellum have been used as a multi-purpose tool for neuroimaging research. Here, we provide an overview of the many practical applications of cerebellar functional gradient analyses. These practical applications include examination of intra-cerebellar and cerebellar-extracerebellar organization; transformation of functional gradients into parcellations with discrete borders; projection of functional gradients calculated within cerebellar structures to other extracerebellar structures; interpretation of cerebellar neuroimaging findings using qualitative and quantitative methods; detection of differences in patient populations; and other more complex practical applications of cerebellar gradient-based analyses. This review may serve as an introduction and catalog of options for neuroscientists who wish to design and analyze imaging studies using functional gradients of the cerebellum.


Asunto(s)
Cerebelo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen
5.
Cerebellum ; 21(2): 225-233, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34146220

RESUMEN

The interaction of the cerebellum with cerebral cortical dynamics is still poorly understood. In this paper, dynamical causal modeling is used to examine the interaction between cerebellum and cerebral cortex as indexed by MRI resting-state functional connectivity in three large-scale networks on healthy young adults (N = 200; Human Connectome Project dataset). These networks correspond roughly to default mode, task positive, and motor as determined by prior cerebellar functional gradient analyses. We find uniform interactions within all considered networks from cerebellum to cerebral cortex, providing support for the notion of a universal cerebellar transform. Our results provide a foundation for future analyses to quantify and further investigate whether this is a property that is unique to the interactions from cerebellum to cerebral cortex.


Asunto(s)
Corteza Cerebral , Conectoma , Cerebelo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Conectoma/métodos , Humanos , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen , Adulto Joven
6.
Neuroimage ; 240: 118379, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34252527

RESUMEN

Mapping the structural and functional connectivity of the central nervous system has become a key area within neuroimaging research. While detailed network structures across the entire brain have been probed using animal models, non-invasive neuroimaging in humans has thus far been dominated by cortical investigations. Beyond the cortex, subcortical nuclei have traditionally been less accessible due to their smaller size and greater distance from radio frequency coils. However, major neuroimaging developments now provide improved signal and the resolution required to study these structures. Here, we present an overview of the connectivity between the amygdala, brainstem, cerebellum, spinal cord and the rest of the brain. While limitations to their imaging and analyses remain, we also provide some recommendations and considerations for mapping brain connectivity beyond the cortex.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética/métodos , Amígdala del Cerebelo/diagnóstico por imagen , Animales , Tronco Encefálico/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Red en Modo Predeterminado , Imagen de Difusión Tensora/métodos , Humanos , Relación Señal-Ruido , Médula Espinal/diagnóstico por imagen
7.
Cerebellum ; 20(3): 392-401, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33210245

RESUMEN

Adolescents with anxiety disorders exhibit excessive emotional and somatic arousal. Neuroimaging studies have shown abnormal cerebral cortical activation and connectivity in this patient population. The specific role of cerebellar output circuitry, specifically the dentate nuclei (DN), in adolescent anxiety disorders remains largely unexplored. Resting-state functional connectivity analyses have parcellated the DN, the major output nuclei of the cerebellum, into three functional territories (FTs) that include default-mode, salience-motor, and visual networks. The objective of this study was to understand whether FTs of the DN are implicated in adolescent anxiety disorders. Forty-one adolescents (mean age 15.19 ± 0.82, 26 females) with one or more anxiety disorders and 55 age- and gender-matched healthy controls completed resting-state fMRI scans and a self-report survey on anxiety symptoms. Seed-to-voxel functional connectivity analyses were performed using the FTs from DN parcellation. Brain connectivity metrics were then correlated with State-Trait Anxiety Inventory (STAI) measures within each group. Adolescents with an anxiety disorder showed significant hyperconnectivity between salience-motor DN FT and cerebral cortical salience-motor regions compared to controls. Salience-motor FT connectivity with cerebral cortical sensorimotor regions was significantly correlated with STAI-trait scores in HC (R2 = 0.41). Here, we report DN functional connectivity differences in adolescents diagnosed with anxiety, as well as in HC with variable degrees of anxiety traits. These observations highlight the relevance of DN as a potential clinical and sub-clinical marker of anxiety.


Asunto(s)
Trastornos de Ansiedad/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Adolescente , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Movimiento/fisiología , Red Nerviosa/diagnóstico por imagen , Pruebas Neuropsicológicas , Autoinforme
8.
Eur Arch Psychiatry Clin Neurosci ; 271(4): 647-659, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32494887

RESUMEN

Negative symptoms in the motivational domain are strongly correlated with deficits in social and occupational functioning in schizophrenia. However, the neural substrates underlying these symptoms remain largely unknown. Twenty-eight adults with schizophrenia and twenty healthy volunteers underwent functional magnetic resonance while completing a lottery game designed to capture reward-related cognitive processes. Each trial demanded an initial investment of effort in form of key presses to increase the odds of winning. Brain activity in response to different reward cues (1 euro versus 1 cent) was compared between groups. Whereas controls invested more effort in improving their chances to win 1 euro compared to 1 cent in the lottery game, patients invested similarly high amounts of effort in both reward conditions. The neuroimaging analysis revealed lower neural activity in the bilateral caudate and cingulo-opercular circuits and decreased effective connectivity between reward-associated areas and neural nodes in the frontoparietal and salience network in response to high- versus low-reward conditions in schizophrenia patients compared to controls. Effective connectivity differences across conditions were associated with amotivation symptoms in patients. Overall, our data provide the evidence of alterations in neural activity in the caudate and cingulo-opercular "task maintenance" circuits and frontoparietal effective connectivity with reward-associated nodes as possible underlying mechanisms of reward value discrimination deficits affecting effort computation in schizophrenia.


Asunto(s)
Esquizofrenia , Adulto , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Motivación , Recompensa , Esquizofrenia/diagnóstico por imagen , Psicología del Esquizofrénico
9.
Cereb Cortex ; 30(4): 2401-2417, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-31701117

RESUMEN

Anatomical connections link the cerebellar cortex with multiple sensory, motor, association, and paralimbic cerebral areas. The majority of fibers that exit cerebellar cortex synapse in dentate nuclei (DN) before reaching extracerebellar structures such as cerebral cortex, but the functional neuroanatomy of human DN remains largely unmapped. Neuroimaging research has redefined broad categories of functional division in the human brain showing that primary processing, attentional (task positive) processing, and default-mode (task negative) processing are three central poles of neural macroscale functional organization. This broad spectrum of human neural processing categories is represented not only in the cerebral cortex, but also in the thalamus, striatum, and cerebellar cortex. Whether functional organization in DN obeys a similar set of macroscale divisions, and whether DN are yet another compartment of representation of a broad spectrum of human neural processing categories, remains unknown. Here, we show for the first time that human DN are optimally divided into three functional territories as indexed by high spatio-temporal resolution resting-state MRI in 77 healthy humans, and that these three distinct territories contribute uniquely to default-mode, salience-motor, and visual cerebral cortical networks. Our findings provide a systems neuroscience substrate for cerebellar output to influence multiple broad categories of neural control.


Asunto(s)
Núcleos Cerebelosos/diagnóstico por imagen , Núcleos Cerebelosos/fisiología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Adolescente , Adulto , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino
10.
Cerebellum ; 19(1): 1-5, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31707620

RESUMEN

The cerebellum is relevant for virtually all aspects of behavior in health and disease. Cerebellar findings are common across all kinds of neuroimaging studies of brain function and dysfunction. A large and expanding body of literature mapping motor and non-motor functions in the healthy human cerebellar cortex using fMRI has served as a tool for interpreting these findings. For example, results of cerebellar atrophy in Alzheimer's disease in caudal aspects of Crus I/II and medial lobule IX can be interpreted by consulting a large number of task, resting-state, and gradient-based reports that describe the functional characteristics of these specific aspects of the cerebellar cortex. Here, we provide a concise summary that outlines organizational principles observed consistently across these studies of normal cerebellar organization. This basic framework may be useful for investigators performing or reading experiments that require a functional interpretation of human cerebellar topography.


Asunto(s)
Corteza Cerebelosa/anatomía & histología , Corteza Cerebelosa/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Enfermedades Cerebelosas/diagnóstico por imagen , Cerebelo/anatomía & histología , Cerebelo/diagnóstico por imagen , Humanos , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen
11.
Cerebellum ; 19(1): 16-29, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31321675

RESUMEN

A patient diagnosed with developmental delay, intellectual disability, and autistic and obsessive-compulsive symptoms was found to have a posterior fossa arachnoid cyst (PFAC) compressing the cerebellum. The patient was referred to our Ataxia Unit for consideration of surgical drainage of the cyst to improve his clinical constellation. This scenario led to an in-depth analysis including a literature review, functional resting-state MRI analysis of our patient compared to a group of controls, and genetic testing. While it is reasonable to consider that there may be a causal relationship between PFAC and neurodevelopmental or psychiatric symptoms in some patients, there is also a nontrivial prevalence of PFAC in the asymptomatic population and a significant possibility that many PFAC are incidental findings in the context of primary cognitive or psychiatric symptoms. Our functional MRI analysis is the first to examine brain function, and to report cerebellar dysfunction, in a patient presenting with cognitive/psychiatric symptoms found to have a structural abnormality compressing the cerebellum. These neuroimaging findings are inherently limited due to their correlational nature but provide unprecedented evidence suggesting that cerebellar compression may be associated with cerebellar dysfunction. Exome gene sequencing revealed additional etiological possibilities, highlighting the complexity of this field of cerebellar clinical and scientific practice. Our findings and discussion may guide future investigations addressing an important knowledge gap-namely, is there a link between cerebellar compression (including arachnoid cysts and possibly other forms of cerebellar compression such as Chiari malformation), cerebellar dysfunction (including fMRI abnormalities reported here), and neuropsychiatric symptoms?


Asunto(s)
Quistes Aracnoideos/diagnóstico por imagen , Enfermedades Cerebelosas/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Trastornos Mentales/diagnóstico por imagen , Trastornos del Neurodesarrollo/diagnóstico por imagen , Adulto , Quistes Aracnoideos/complicaciones , Quistes Aracnoideos/cirugía , Enfermedades Cerebelosas/complicaciones , Enfermedades Cerebelosas/cirugía , Cerebelo/cirugía , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Trastornos Mentales/complicaciones , Trastornos Mentales/cirugía , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/cirugía
12.
Cerebellum ; 19(6): 833-868, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32632709

RESUMEN

The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions.


Asunto(s)
Cerebelo/diagnóstico por imagen , Cerebelo/fisiología , Consenso , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Cognición Social , Mapeo Encefálico/métodos , Humanos , Mentalización/fisiología , Desempeño Psicomotor/fisiología , Conducta Social
13.
Brain ; 141(1): 248-270, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29206893

RESUMEN

Cerebellar cognitive affective syndrome (CCAS; Schmahmann's syndrome) is characterized by deficits in executive function, linguistic processing, spatial cognition, and affect regulation. Diagnosis currently relies on detailed neuropsychological testing. The aim of this study was to develop an office or bedside cognitive screen to help identify CCAS in cerebellar patients. Secondary objectives were to evaluate whether available brief tests of mental function detect cognitive impairment in cerebellar patients, whether cognitive performance is different in patients with isolated cerebellar lesions versus complex cerebrocerebellar pathology, and whether there are cognitive deficits that should raise red flags about extra-cerebellar pathology. Comprehensive standard neuropsychological tests, experimental measures and clinical rating scales were administered to 77 patients with cerebellar disease-36 isolated cerebellar degeneration or injury, and 41 complex cerebrocerebellar pathology-and to healthy matched controls. Tests that differentiated patients from controls were used to develop a screening instrument that includes the cardinal elements of CCAS. We validated this new scale in a new cohort of 39 cerebellar patients and 55 healthy controls. We confirm the defining features of CCAS using neuropsychological measures. Deficits in executive function were most pronounced for working memory, mental flexibility, and abstract reasoning. Language deficits included verb for noun generation and phonemic > semantic fluency. Visual spatial function was degraded in performance and interpretation of visual stimuli. Neuropsychiatric features included impairments in attentional control, emotional control, psychosis spectrum disorders and social skill set. From these results, we derived a 10-item scale providing total raw score, cut-offs for each test, and pass/fail criteria that determined 'possible' (one test failed), 'probable' (two tests failed), and 'definite' CCAS (three tests failed). When applied to the exploratory cohort, and administered to the validation cohort, the CCAS/Schmahmann scale identified sensitivity and selectivity, respectively as possible exploratory cohort: 85%/74%, validation cohort: 95%/78%; probable exploratory cohort: 58%/94%, validation cohort: 82%/93%; and definite exploratory cohort: 48%/100%, validation cohort: 46%/100%. In patients in the exploratory cohort, Mini-Mental State Examination and Montreal Cognitive Assessment scores were within normal range. Complex cerebrocerebellar disease patients were impaired on similarities in comparison to isolated cerebellar disease. Inability to recall words from multiple choice occurred only in patients with extra-cerebellar disease. The CCAS/Schmahmann syndrome scale is useful for expedited clinical assessment of CCAS in patients with cerebellar disorders.awx317media15678692096001.


Asunto(s)
Enfermedades Cerebelosas/complicaciones , Enfermedades Cerebelosas/diagnóstico , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/etiología , Índice de Severidad de la Enfermedad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Función Ejecutiva , Femenino , Humanos , Masculino , Persona de Mediana Edad , Examen Neurológico , Pruebas Neuropsicológicas , Escalas de Valoración Psiquiátrica , Aprendizaje Verbal , Percepción Visual , Adulto Joven
14.
Neuroimage ; 172: 437-449, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29408539

RESUMEN

Delineation of functional topography is critical to the evolving understanding of the cerebellum's role in a wide range of nervous system functions. We used data from the Human Connectome Project (n = 787) to analyze cerebellar fMRI task activation (motor, working memory, language, social and emotion processing) and resting-state functional connectivity calculated from cerebral cortical seeds corresponding to the peak Cohen's d of each task contrast. The combination of exceptional statistical power, activation from both motor and multiple non-motor tasks in the same participants, and convergent resting-state networks in the same participants revealed novel aspects of the functional topography of the human cerebellum. Consistent with prior studies there were two distinct representations of motor activation. Newly revealed were three distinct representations each for working memory, language, social, and emotional task processing that were largely separate for these four cognitive and affective domains. In most cases, the task-based activations and the corresponding resting-network correlations were congruent in identifying the two motor representations and the three non-motor representations that were unique to working memory, language, social cognition, and emotion. The definitive localization and characterization of distinct triple representations for cognition and emotion task processing in the cerebellum opens up new basic science questions as to why there are triple representations (what different functions are enabled by the different representations?) and new clinical questions (what are the differing consequences of lesions to the different representations?).


Asunto(s)
Cerebelo/fisiología , Emociones/fisiología , Lenguaje , Memoria a Corto Plazo/fisiología , Conducta Social , Adulto , Estudios de Cohortes , Conectoma/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
15.
Compr Psychiatry ; 87: 153-160, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30415197

RESUMEN

BACKGROUND: Negative symptoms in schizophrenia, which are related to poor functioning, are thought to be grounded on aberrant functioning in the reward system. We aimed to disentangle how negative symptoms and two cognitive aspects of goal-directed behavior, mental representation of reward and reward value, affect willingness to invest effort to attain a reward in schizophrenia. AIMS AND PROCEDURES: To this purpose, 43 schizophrenia patients and 35 healthy controls were assessed for negative symptoms and general functioning, and completed an effort-based reward task. Patients were split in high and low negative symptoms scorers. A series of ANOVA tests were conducted in order to test the effects of group controlling for representation of reward (Task 1) and balance between reward value and effort (Task 2) on will to invest effort to attain a reward. MAIN FINDINGS: Schizophrenia patients with high negative symptoms chose to invest lower amounts of effort for a reward compared both to low negative symptoms patients and to controls in both tasks. Neither mental representation of reward (Task 1) nor reward value (Task 2) did differentially affect will to invest effort between-groups. CONCLUSIONS: These findings suggest that the lower willingness to invest effort observed in schizophrenia patients with high negative symptoms may not be related to cognitive aspects of goal-oriented behavior.


Asunto(s)
Ejercicio Físico/psicología , Motivación , Recompensa , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esfuerzo Físico , Análisis y Desempeño de Tareas
17.
Cerebellum ; 15(6): 732-743, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26585120

RESUMEN

Emotion attribution (EA) from faces is key to social cognition, and deficits in perception of emotions from faces underlie neuropsychiatric disorders in which cerebellar pathology is reported. Here, we test the hypothesis that the cerebellum contributes to social cognition through EA from faces. We examined 57 patients with cerebellar disorders and 57 healthy controls. Thirty-one patients had complex cerebrocerebellar disease (complex cerebrocerebellar disease group (CD)); 26 had disease isolated to cerebellum (isolated cerebellar disease group (ID)). EA was measured with the Reading the Mind in the Eyes test (RMET), and informants were administered a novel questionnaire, the Cerebellar Neuropsychiatric Rating Scale (CNRS). EA was impaired in all patients (CD p < 0.001, ID p < 0.001). When analyzed for valence categories, both CD and ID missed more positive and negative stimuli. Positive targets produced the highest deficit (CD p < 0.001, ID p = 0.004). EA impairments correlated with CNRS measures of deficient social skills (p < 0.05) and autism spectrum behaviors (p < 0.005). Patients had difficulties with emotion regulation (CD p < 0.001, ID p < 0.001), autism spectrum behaviors (CD p < 0.049, ID p < 0.001), and psychosis spectrum symptoms (CD p < 0.021, ID p < 0.002). ID informants endorsed deficient social skills (CD p < 0.746, ID p < 0.003) and impaired attention regulation (CD p < 0.144, ID p < 0.001). Within the psychosis spectrum domain, CD patients were worse than controls for lack of empathy (CD p = 0.05; ID p = 0.49). Thus, patients with cerebellar damage were impaired on an EA task associated with deficient social skills and autism spectrum behaviors and experienced psychosocial difficulties on the CNRS. This has relevance for ataxias, the cerebellar cognitive affective/Schmahmann syndrome, and neuropsychiatric disorders with cerebellar pathology.


Asunto(s)
Enfermedades Cerebelosas/psicología , Percepción Social , Habilidades Sociales , Adolescente , Adulto , Atención , Trastorno del Espectro Autista/psicología , Enfermedades Cerebelosas/complicaciones , Cognición , Inteligencia Emocional , Empatía , Función Ejecutiva , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Escalas de Valoración Psiquiátrica , Encuestas y Cuestionarios , Adulto Joven
18.
Cerebellum ; 14(1): 50-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25503825

RESUMEN

The cerebellar cognitive affective syndrome (CCAS) includes disruption of linguistic processing such as verbal fluency, verbal working memory, grammar, and speech perception. We set out to examine linguistic capabilities in patients with cerebellar lesions to determine which domains are spared and which impaired and to evaluate the underlying cognitive structure of these deficits. Forty-four patients with cerebellar disease were compared to 40 healthy controls on the Oral Sentence Production Test (OSPT) which assesses production of sentences with correct syntactic structure and semantic quality. Twenty-five of these cerebellar patients and 25 controls received the Test of Language Competence-Expanded (TLC-E) that assesses metalinguistic ability. The OSPT failed to reveal differences between patients and controls. In contrast, all cerebellar patients were impaired on each of the four TLC-E subtests. Differences between isolated cerebellar and complex cerebrocerebellar patients were nonsignificant. These results confirm and extend prior observations of the TLC-E in patients with cerebellar lesions and suggest three separate but related language impairments following cerebellar dysfunction: (1) disruption in automatic adjustment of intact grammatical and semantic abilities to a linguistic context in sentence production, (2) disruption in automatic adjustment to a linguistic context in sentence interpretation, and (3) disruption of cognitive processes essential for linguistic skills, such as analysis and sequential logical reasoning. These findings are consistent with the unifying framework of the universal cerebellar transform and the dysmetria of thought theory and provide new insights into the nature of the cognitive impairments in patients with the CCAS.


Asunto(s)
Enfermedades Cerebelosas/psicología , Trastornos del Lenguaje/psicología , Lingüística , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Psicológicas , Síndrome , Adulto Joven
19.
J Comp Neurol ; 531(18): 2185-2193, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37609856

RESUMEN

Anatomical studies in animals and imaging studies in humans show that cerebral sensorimotor areas map onto corresponding cerebellar sensorimotor areas and that cerebral association areas map onto cerebellar posterior lobe regions designated as the representation of the association (cognitive and limbic) cerebellum. We report a patient with unilateral left hemispheric status epilepticus, whose brain MRI revealed diffuse unihemispheric cerebral cortical FLAIR and diffusion signal hyperintensity but spared primary motor, somatosensory, visual, and to lesser extent auditory cerebral cortices. Crossed cerebellar diaschisis (dysfunction at a site remote from, but connected to, the location of the primary lesion) showed signal hyperintensity in the right cerebellar posterior lobe and lobule IX, with sparing of the anterior lobe, and lobule VIII. This unique topographic pattern of involvement and sparing of cerebral and cerebellar cortical areas matches the anatomical and functional connectivity specialization in the cerebrocerebellar circuit. This first demonstration of within-hemispheric specificity in the areas affected and spared by cerebrocerebellar diaschisis provides further confirmation in the human brain for topographic organization of connections between the cerebral hemispheres and the cerebellum.


Asunto(s)
Vermis Cerebeloso , Diásquisis , Corteza Sensoriomotora , Animales , Humanos , Cerebelo/diagnóstico por imagen , Imagen por Resonancia Magnética
20.
Brain Struct Funct ; 228(7): 1799-1810, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37439862

RESUMEN

For years, the cerebellum was left out of functional magnetic resonance imaging (fMRI) studies due to technological limitations. The advent of novel data acquisition and reconstruction strategies (e.g., whole-brain simultaneous multi-slice imaging) employing multi-channel array coils has overcome such limitations, ushering unprecedented improvements in temporal signal-to-noise ratio and spatiotemporal resolution. Here, we aim to provide a brief report on the deep cerebellar nuclei, specifically focusing on the dentate nuclei, the primary output nuclei, situated within both cognitive and motor cerebello-cerebral circuits. We highlight the importance of functional parcellation in refining our understanding of broad resting-state functional connectivity (RSFC) in both health and disease. First, we review work relevant to the functional topography of the dentate nuclei, including recent advances in functional parcellation. Next, we review RSFC studies using the dentate nuclei as seed regions of interest in neurological and psychiatric populations and discuss the potential benefits of applying functionally defined subdivisions. Finally, we discuss recent technological advances and underscore ultrahigh-field neuroimaging as a tool to potentiate functionally parcellated RSFC analyses in clinical populations.


Asunto(s)
Núcleos Cerebelosos , Relevancia Clínica , Humanos , Núcleos Cerebelosos/diagnóstico por imagen , Cerebelo , Encéfalo , Imagen por Resonancia Magnética/métodos , Vías Nerviosas , Mapeo Encefálico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA