Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(9): 7504-7514, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38357814

RESUMEN

Currently, self-induced InAlN core-shell nanorods enjoy an advanced stage of accumulation of experimental data from their growth and characterization as well as a comprehensive understanding of their formation mechanism by the ab initio modeling based on Synthetic Growth Concept. However, their electronic and optical properties, on which most of their foreseen applications are expected to depend, have not been investigated comprehensively. GW and the Bethe-Salpeter equation (BSE) are regarded as the state-of-the-art ab initio methodologies to study these properties. However, one of the major drawbacks of these methods is the computational cost, much higher than density-functional theory (DFT). Therefore, in many applications, it is highly desirable to answer the question of how well approaches based on DFT, such as e.g. the local density approximation (LDA), LDA-1/2, the modified Becke-Johnson (mBJ) and the Heyd-Scuseria-Ernzerhof (HSE06) functionals, can be employed to calculate electronic and optical properties with reasonable accuracy. In the present paper, we address this question, investigating how effective the DFT-based methodologies LDA, LDA-1/2, mBJ and HSE06 can be used as approximate tools in studies of the electronic and optical properties of scaled down models of core-shell InAlN nanorods, thus, avoiding GW and BSE calculations.

2.
Phys Chem Chem Phys ; 25(7): 5887, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36744640

RESUMEN

Correction for 'Discovering atomistic pathways for supply of metal atoms from methyl-based precursors to graphene surface' by Davide G. Sangiovanni et al., Phys. Chem. Chem. Phys., 2023, 25, 829-837, https://doi.org/10.1039/D2CP04091C.

3.
Phys Chem Chem Phys ; 25(1): 829-837, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36511446

RESUMEN

Conceptual 2D group III nitrides and oxides (e.g., 2D InN and 2D InO) in heterostructures with graphene have been realized by metal-organic chemical vapor deposition (MOCVD). MOCVD is expected to bring forth the same impact in the advancement of 2D semiconductor materials as in the fabrication of established semiconductor materials and device heterostructures. MOCVD employs metal-organic precursors such as trimethyl-indium, -gallium, and -aluminum, with (strong) metal-carbon bonds. Mechanisms that regulate MOCVD processes at the atomic scale are largely unknown. Here, we employ density-functional molecular dynamics - accounting for van der Waals interactions - to identify the reaction pathways responsible for dissociation of the trimethylindium (TMIn) precursor in the gas phase as well as on top-layer and zero-layer graphene. The simulations reveal how collisions with hydrogen molecules, intramolecular or surface-mediated proton transfer, and direct TMIn/graphene reactions assist TMIn transformations, which ultimately enables delivery of In monomers or InH and CH3In admolecules, on graphene. This work provides knowledge for understanding the nucleation and intercalation mechanisms at the atomic scale and for carrying out epitaxial growth of 2D materials and graphene heterostructures.

4.
Materials (Basel) ; 17(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38591447

RESUMEN

Mono- and few-layer hexagonal AlN (h-AlN) has emerged as an alternative "beyond graphene" and "beyond h-BN" 2D material, especially in the context of its verification in ultra-high vacuum Scanning Tunneling Microscopy and Molecular-beam Epitaxy (MBE) experiments. However, graphitic-like AlN has only been recently obtained using a scalable and semiconductor-technology-related synthesis techniques, such as metal-organic chemical vapor deposition (MOCVD), which involves a hydrogen-rich environment. Motivated by these recent experimental findings, in the present work, we carried out ab initio calculations to investigate the hydrogenation of h-AlN monolayers in a variety of functionalization configurations. We also investigated the fluorination of h-AlN monolayers in different decoration configurations. We find that a remarkable span of bandgap variation in h-AlN, from metallic properties to nar-row-bandgap semiconductor, and to wide-bandgap semiconductor can be achieved by its hy-drogenation and fluorination. Exciting application prospects may also arise from the findings that H and F decoration of h-AlN can render some such configurations magnetic. We complemented this modelling picture by disclosing a viable experimental strategy for the fluorination of h-AlN.

5.
Cryst Growth Des ; 24(11): 4717-4727, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38855578

RESUMEN

The self-induced formation of core-shell InAlN nanorods (NRs) is addressed at the mesoscopic scale by density functional theory (DFT)-resulting parameters to develop phase field modeling (PFM). Accounting for the structural, bonding, and electronic features of immiscible semiconductor systems at the nanometer scale, we advance DFT-based procedures for computation of the parameters necessary for PFM simulation runs, namely, interfacial energies and diffusion coefficients. The developed DFT procedures conform to experimental self-induced InAlN NRs' concerning phase-separation, core/shell interface, morphology, and composition. Finally, we infer the prospects for the transferability of the coupled DFT-PFM simulation approach to a wider range of nanostructured semiconductor materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA