RESUMEN
Imidacloprid (IMI) is an insecticide used worldwide, a neonicotinoid that could cause toxicity in non-target organisms. Zebrafish (Danio rerio) is a model organism widely used in different fields of research such as behavioral studies, biochemical parameters as well as neurotoxicity research. Here, we investigate whether the exposure to three concentrations (0.15, 15, and 45 µg/L) of IMI for 96 h alters responses in zebrafish. Oxidative stress parameters and acetylcholinesterase activity (AChE) as well as the behavioral responses of locomotion were measured. IMI exposure decreased distance traveled in fish exposed to the 45 µg/L. In the exploratory activity, time spent and transitions to the top area of the water column decreased in fish exposed to all concentrations of IMI. In addition, exposures to 45 and 15 µg/L of IMI decreased episodes of erratic movement in the zebrafish. Exposures to IMI at a concentration of 45 µg/L decreased the time spent in erratic movements and increased the time spent with no movement (i.e., "freezing"). Glutathione S-transferase (GST) activity was increased in the brain of zebrafish exposed for 96 h to concentrations of 0.15 and 45 µg/L. Brain AChE activity was reduced and the levels of carbonyl protein (CP) increased in brain of zebrafish at concentrations of 15 and 45 µg/L. Lipid peroxidation measured by TBARS and, also non-protein thiols (NPSH) did not show any variation in the brain of zebrafish exposed to IMI. Changes in the activity of cholinergic neurotransmitters in the brain tissues of zebrafish indicate IMI toxicity. Exposures of fish over 96 h to IMI at a nominal concentration of 45 µg/L caused more extensive sublethal responses in zebrafish, but this concentration is well above those expected in the aquatic environment. Studies are warranted to evaluate the effects on behavior and biomarker responses in fish exposed over longer periods to IMI at environmentally relevant concentrations.
Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Antioxidantes , Neonicotinoides/toxicidad , Nitrocompuestos , Estrés Oxidativo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
Reservoirs are lentic man-made waterbodies resulting from river damming processes. Pollutants coming from adjacent areas can accumulate in the water and sediment of these modified freshwater environments. Fish are often found in reservoirs occupying several trophic niches. Biochemical biomarkers are early warning signals of environmental disturbance to an organism. It is essential to understand how pollutants, abiotic variables and biochemical biomarker responses behave throughout the seasons to implement biomonitoring programs. Loricariichthys anus and Geophagus brasiliensis were collected, and abiotic variables were seasonally measured for one year, at six sampling sites in Passo Real reservoir, in a subtropical region of Southern Brazil. Biochemical biomarkers were analyzed in four tissues of both fish species, as well as metal and pesticide concentrations in the reservoir's water and sediment. Redundancy analysis (RDA) was carried out to find the temporal relationship between biomarkers and environmental variables. RDA has clearly shown the separation of seasons for both species. Azoxystrobin, simazine and propoxur were the pesticides mostly contributing to the variation, whereas metals had lesser contribution to it. Seasonality appears to be the main factor explaining biomarkers' variability. PERMANOVA has confirmed the effect of temperature and dissolved oxygen on biomarkers of both fish species. Thus, it is hard to differentiate if the fluctuation in biomarkers' responses only reflects the normal state of organisms or it is a biological consequence from negative effects of fish exposure to several types of pollution (sewage, pesticides, and fertilizers) entering this aquatic system. In this study, to circumvent the seasonality issue on biomonitoring, the analysis of biomarkers on these fish should not be carried out in organs directly affected by temperature (such as liver and gills), or during reproduction periods (mainly in Spring).