Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Med Genet ; 50(9): 627-34, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23804846

RESUMEN

BACKGROUND: Non-syndromic hearing loss (NSHL) is the most common sensory impairment in humans. Until recently its extreme genetic heterogeneity precluded comprehensive genetic testing. Using a platform that couples targeted genomic enrichment (TGE) and massively parallel sequencing (MPS) to sequence all exons of all genes implicated in NSHL, we tested 100 persons with presumed genetic NSHL and in so doing established sequencing requirements for maximum sensitivity and defined MPS quality score metrics that obviate Sanger validation of variants. METHODS: We examined DNA from 100 sequentially collected probands with presumed genetic NSHL without exclusions due to inheritance, previous genetic testing, or type of hearing loss. We performed TGE using post-capture multiplexing in variable pool sizes followed by Illumina sequencing. We developed a local Galaxy installation on a high performance computing cluster for bioinformatics analysis. RESULTS: To obtain maximum variant sensitivity with this platform 3.2-6.3 million total mapped sequencing reads per sample were required. Quality score analysis showed that Sanger validation was not required for 95% of variants. Our overall diagnostic rate was 42%, but this varied by clinical features from 0% for persons with asymmetric hearing loss to 56% for persons with bilateral autosomal recessive NSHL. CONCLUSIONS: These findings will direct the use of TGE and MPS strategies for genetic diagnosis for NSHL. Our diagnostic rate highlights the need for further research on genetic deafness focused on novel gene identification and an improved understanding of the role of non-exonic mutations. The unsolved families we have identified provide a valuable resource to address these areas.


Asunto(s)
Sordera/genética , Pruebas Genéticas/métodos , Genómica/métodos , Adolescente , Adulto , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
2.
BMC Genomics ; 13: 618, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23148716

RESUMEN

BACKGROUND: Targeted genomic enrichment (TGE) is a widely used method for isolating and enriching specific genomic regions prior to massively parallel sequencing. To make effective use of sequencer output, barcoding and sample pooling (multiplexing) after TGE and prior to sequencing (post-capture multiplexing) has become routine. While previous reports have indicated that multiplexing prior to capture (pre-capture multiplexing) is feasible, no thorough examination of the effect of this method has been completed on a large number of samples. Here we compare standard post-capture TGE to two levels of pre-capture multiplexing: 12 or 16 samples per pool. We evaluated these methods using standard TGE metrics and determined the ability to identify several classes of genetic mutations in three sets of 96 samples, including 48 controls. Our overall goal was to maximize cost reduction and minimize experimental time while maintaining a high percentage of reads on target and a high depth of coverage at thresholds required for variant detection. RESULTS: We adapted the standard post-capture TGE method for pre-capture TGE with several protocol modifications, including redesign of blocking oligonucleotides and optimization of enzymatic and amplification steps. Pre-capture multiplexing reduced costs for TGE by at least 38% and significantly reduced hands-on time during the TGE protocol. We found that pre-capture multiplexing reduced capture efficiency by 23 or 31% for pre-capture pools of 12 and 16, respectively. However efficiency losses at this step can be compensated by reducing the number of simultaneously sequenced samples. Pre-capture multiplexing and post-capture TGE performed similarly with respect to variant detection of positive control mutations. In addition, we detected no instances of sample switching due to aberrant barcode identification. CONCLUSIONS: Pre-capture multiplexing improves efficiency of TGE experiments with respect to hands-on time and reagent use compared to standard post-capture TGE. A decrease in capture efficiency is observed when using pre-capture multiplexing; however, it does not negatively impact variant detection and can be accommodated by the experimental design.


Asunto(s)
Genoma Humano , Genómica , Pérdida Auditiva/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Estudios de Casos y Controles , Análisis Costo-Beneficio , Código de Barras del ADN Taxonómico , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Humanos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oligonucleótidos/genética , Análisis de Secuencia de ADN/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA