RESUMEN
Understanding the relationships between cognitive abilities and fitness is integral to an evolutionary study of brain and behavior. However, these relationships are often difficult to measure and detect. Here we draw upon an opportunistic sample of brown-headed cowbird (Molothrus ater) subjects that had two separate research experiences: First, they engaged in a large series of cognitive tests in David Sherry's Lab in the Advanced Facility for Avian Research (AFAR) at Western University, then subsequently moved to the Field Avian Research Megalab (FARM) at Wilfrid Laurier University where they lived in large breeding flocks in aviaries with other wild-caught cowbirds. Thus, we had extensive measures of cognitive abilities, breeding behavior, and reproductive success for these birds. We report here, for the fist time, the surprisingly strong connections we found among these different measures. Female cowbirds' spatial cognitive abilities correlated positively with how intensely they were courted by males, and with their overall egg production. Males' spatial cognition correlated positively with their ability to engage in singing contests ("countersinging") with other males. In addition, a separate non-spatial cognitive ability correlated positively with the attractiveness of the songs they sung. In sum, these results suggest the cognitive skills assessed in the lab were strongly connected to breeding behavior and reproductive success. Moreover, since certain cognitive abilities related to different aspects of breeding success, it suggests that cognitive modules may have specialized adaptive value, but also that these specialized skills may interact and influence fitness in surprising ways.
Asunto(s)
Passeriformes , Animales , Evolución Biológica , Encéfalo , Cognición , Femenino , Humanos , MasculinoRESUMEN
Triphenyl phosphate (TPHP; CAS # 115-86-6), a commonly used plasticizer and flame retardant, has been reported in wild birds and identified as a potential high-risk chemical. We exposed Japanese quail (Coturnix japonica) by in ovo injection, and once hatched, orally each day for 5 days to safflower oil (controls) or TPHP dissolved in vehicle at low (5â¯ng TPHP/g), mid (50â¯ng TPHP/g), or high (100â¯ng TPHP/g) nominal TPHP doses. The low TPHP dose reflected concentrations in wild bird eggs, with mid and high doses 10x and 20x greater to reflect potential increases in environmental TPHP concentrations in the future. Despite no effects on mRNA expression in thyroid-related genes, TPHP exposure enhanced thyroid gland structure in high TPHP males, but in females, suppressed thyroid gland structure and activity (all TPHP females), and circulating free triiodothyronine (high TPHP females only). Consistent with thyroidal changes, and compared to controls, mid and high TPHP chicks experienced significantly reduced resting metabolic rate (≤13%) and growth (≤53%); mid TPHP males and high TPHP females were significantly smaller. The observed thyroidal effects and suppressed growth and metabolic rate of the quail chicks suggest that TPHP may adversely affect the health of wild birds.