Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 60(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38256338

RESUMEN

Prostate cancer is the second leading cause of cancer death in men in the United States. Androgen deprivation therapy (ADT) is currently the primary treatment for metastatic prostate cancer, and some studies have shown that the use of anti-androgen drugs is related to a reduction in cognitive function, mood changes, diminished quality of life, dementia, and possibly Alzheimer's disease. ADT has potential physiological effects such as a reduction in white matter integrity and a negative impact on hypothalamic functions due to the lowering of testosterone levels or the blockade of downstream androgen receptor signaling by first- and second-generation anti-androgen drugs. A comparative analysis of prostate cancer patients undergoing ADT and Alzheimer patients identified over 30 shared genes, illustrating common ground for the mechanistic underpinning of the symptomatology. The purpose of this review was to investigate the effects of ADT on cognitive function, mood, and quality of life, as well as to analyze the relationship between ADT and Alzheimer's disease. The evaluation of prostate cancer patient cognitive ability via neurocognitive testing is described. Future studies should further explore the connection among cognitive deficits, mood disturbances, and the physiological changes that occur when hormonal balance is altered.


Asunto(s)
Enfermedad de Alzheimer , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/complicaciones , Neoplasias de la Próstata/tratamiento farmacológico , Antagonistas de Andrógenos/efectos adversos , Andrógenos , Calidad de Vida , Cognición
2.
Life (Basel) ; 14(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38398707

RESUMEN

Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disorder that primarily affects persons aged 65 years and above. It causes dementia with memory loss and deterioration in thinking and language skills. AD is characterized by specific pathology resulting from the accumulation in the brain of extracellular plaques of amyloid-ß and intracellular tangles of phosphorylated tau. The importance of mitochondrial dysfunction in AD pathogenesis, while previously underrecognized, is now more and more appreciated. Mitochondria are an essential organelle involved in cellular bioenergetics and signaling pathways. Mitochondrial processes crucial for synaptic activity such as mitophagy, mitochondrial trafficking, mitochondrial fission, and mitochondrial fusion are dysregulated in the AD brain. Excess fission and fragmentation yield mitochondria with low energy production. Reduced glucose metabolism is also observed in the AD brain with a hypometabolic state, particularly in the temporo-parietal brain regions. This review addresses the multiple ways in which abnormal mitochondrial structure and function contribute to AD. Disruption of the electron transport chain and ATP production are particularly neurotoxic because brain cells have disproportionately high energy demands. In addition, oxidative stress, which is extremely damaging to nerve cells, rises dramatically with mitochondrial dyshomeostasis. Restoring mitochondrial health may be a viable approach to AD treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA