Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Immunol ; 21(3): 343-353, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066951

RESUMEN

Gastrointestinal microbiota and immune cells interact closely and display regional specificity; however, little is known about how these communities differ with location. Here, we simultaneously assess microbiota and single immune cells across the healthy, adult human colon, with paired characterization of immune cells in the mesenteric lymph nodes, to delineate colonic immune niches at steady state. We describe distinct helper T cell activation and migration profiles along the colon and characterize the transcriptional adaptation trajectory of regulatory T cells between lymphoid tissue and colon. Finally, we show increasing B cell accumulation, clonal expansion and mutational frequency from the cecum to the sigmoid colon and link this to the increasing number of reactive bacterial species.


Asunto(s)
Colon/inmunología , Colon/microbiología , Microbioma Gastrointestinal/inmunología , Adulto , Linfocitos B/inmunología , Colon/citología , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Activación de Linfocitos , Especificidad de Órganos , RNA-Seq , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Transcriptoma
2.
J Bacteriol ; 204(4): e0059221, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35323048

RESUMEN

The Gram-negative pathogen Pasteurella multocida is the causative agent of many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. One mechanism by which bacteria regulate transcript abundance and protein production is riboregulation, which involves the interaction of a small RNA (sRNA) with a target mRNA to alter transcript stability and/or translational efficiency. This interaction often requires stabilization by an RNA-binding protein such as ProQ or Hfq. In Escherichia coli and a small number of other species, ProQ has been shown to play a critical role in stabilizing sRNA-mRNA interactions and preferentially binds to the 3' stem-loop regions of the mRNA transcripts, characteristic of intrinsic transcriptional terminators. The aim of this study was to determine the role of ProQ in regulating P. multocida transcript abundance and identify the RNA targets to which it binds. We assessed differentially expressed transcripts in a proQ mutant and identified sites of direct ProQ-RNA interaction using in vivo UV-cross-linking and analysis of cDNA (CRAC). These analyses demonstrated that ProQ binds to, and stabilizes, ProQ-dependent sRNAs and transfer RNAs in P. multocida via adenosine-enriched, highly structured sequences. The binding of ProQ to two RNA molecules was characterized, and these analyses showed that ProQ bound within the coding sequence of the transcript PmVP161_1121, encoding an uncharacterized protein, and within the 3' region of the putative sRNA Prrc13. IMPORTANCE Regulation in P. multocida involving the RNA-binding protein Hfq is required for hyaluronic acid capsule production and virulence. This study further expands our understanding of riboregulation by examining the role of a second RNA-binding protein, ProQ, in transcript regulation and abundance in P. multocida.


Asunto(s)
Proteínas de Escherichia coli , Pasteurella multocida , ARN Pequeño no Traducido , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Pequeño no Traducido/genética , Proteínas de Unión al ARN/metabolismo
3.
RNA ; 24(5): 704-720, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29440476

RESUMEN

Pasteurella multocida is a Gram-negative bacterium responsible for many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. Small RNA (sRNA) molecules are critical regulators that act by binding to specific mRNA targets, often in association with the RNA chaperone protein Hfq. In this study, transcriptomic analysis of the P. multocida strain VP161 revealed a putative sRNA with high identity to GcvB from Escherichia coli and Salmonella enterica serovar Typhimurium. High-throughput quantitative liquid proteomics was used to compare the proteomes of the P. multocida VP161 wild-type strain, a gcvB mutant, and a GcvB overexpression strain. These analyses identified 46 proteins that displayed significant differential production after inactivation of gcvB, 36 of which showed increased production. Of the 36 proteins that were repressed by GcvB, 27 were predicted to be involved in amino acid biosynthesis or transport. Bioinformatic analyses of putative P. multocida GcvB target mRNAs identified a strongly conserved 10 nucleotide consensus sequence, 5'-AACACAACAT-3', with the central eight nucleotides identical to the seed binding region present within GcvB mRNA targets in E. coli and S. Typhimurium. Using a defined set of seed region mutants, together with a two-plasmid reporter system that allowed for quantification of sRNA-mRNA interactions, this sequence was confirmed to be critical for the binding of the P. multocida GcvB to the target mRNA, gltA.


Asunto(s)
Pasteurella multocida/genética , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Aminoácidos/biosíntesis , Proteínas Bacterianas/genética , Sitios de Unión , Escherichia coli/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Proteína de Factor 1 del Huésped/metabolismo , Motivos de Nucleótidos , Pasteurella multocida/metabolismo , Transporte de Proteínas/genética , ARN Bacteriano/química , ARN Mensajero/química , ARN Pequeño no Traducido/química , Regulón
4.
Nat Commun ; 14(1): 6546, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863966

RESUMEN

Many gut microorganisms critical to human health rely on nutrients produced by each other for survival; however, these cross-feeding interactions are still challenging to quantify and remain poorly characterized. Here, we introduce a Metabolite Exchange Score (MES) to quantify those interactions. Using metabolic models of prokaryotic metagenome-assembled genomes from over 1600 individuals, MES allows us to identify and rank metabolic interactions that are significantly affected by a loss of cross-feeding partners in 10 out of 11 diseases. When applied to a Crohn's disease case-control study, our approach identifies a lack of species with the ability to consume hydrogen sulfide as the main distinguishing microbiome feature of disease. We propose that our conceptual framework will help prioritize in-depth analyses, experiments and clinical targets, and that targeting the restoration of microbial cross-feeding interactions is a promising mechanism-informed strategy to reconstruct a healthy gut ecosystem.


Asunto(s)
Enfermedad de Crohn , Microbioma Gastrointestinal , Microbiota , Humanos , Estudios de Casos y Controles , Metagenoma
5.
Cell Rep Med ; 4(7): 101124, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37467722

RESUMEN

Abnormal immune responses to the resident gut microbiome can drive inflammatory bowel disease (IBD). Here, we combine high-resolution, culture-based shotgun metagenomic sequencing and analysis with matched host transcriptomics across three intestinal sites (terminal ileum, cecum, rectum) from pediatric IBD (PIBD) patients (n = 58) and matched controls (n = 42) to investigate this relationship. Combining our site-specific approach with bacterial culturing, we establish a cohort-specific bacterial culture collection, comprising 6,620 isolates (170 distinct species, 32 putative novel), cultured from 286 mucosal biopsies. Phylogeny-based, clade-specific metagenomic analysis identifies key, functionally distinct Enterococcus clades associated with either IBD or health. Strain-specific in vitro validation demonstrates differences in cell cytotoxicity and inflammatory signaling in intestinal epithelial cells, consistent with the colonic mucosa-specific response measured in patients with IBD. This demonstrates the importance of strain-specific phenotypes and consideration of anatomical sites in exploring the dysregulated host-bacterial interactions in IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Humanos , Enfermedades Inflamatorias del Intestino/genética , Colon/patología , Biopsia , Mucosa Intestinal/microbiología , Células Epiteliales/patología
6.
Microb Genom ; 9(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37079454

RESUMEN

Globally, the anaerobic bacterium Clostridium perfringens causes severe disease in a wide array of hosts; however, C. perfringens strains are also carried asymptomatically. Accessory genes are responsible for much of the observed phenotypic variation and virulence within this species, with toxins frequently encoded on conjugative plasmids and many isolates carrying up to 10 plasmids. Despite this unusual biology, current genomic analyses have largely excluded isolates from healthy hosts or environmental sources. Accessory genomes, including plasmids, also have often been excluded from broader scale phylogenetic investigations. Here we interrogate a comprehensive collection of 464 C. perfringens genomes and identify the first putative non-conjugative enterotoxin (CPE)-encoding plasmids and a putative novel conjugative locus (Bcp) with sequence similarity to a locus reported from Clostridium botulinum. We sequenced and archived 102 new C. perfringens genomes, including those from rarely sequenced toxinotype B, C, D and E isolates. Long-read sequencing of 11 C. perfringens strains representing all toxinotypes (A-G) identified 55 plasmids from nine distinct plasmid groups. Interrogation of the 464 genomes in this collection identified 1045 plasmid-like contigs from the nine plasmid families, with a wide distribution across the C. perfringens isolates. Plasmids and plasmid diversity play an essential role in C. perfringens pathogenicity and broader biology. We have expanded the C. perfringens genome collection to include temporal, spatial and phenotypically diverse isolates including those carried asymptomatically in the gastrointestinal microbiome. This analysis has resulted in the identification of novel C. perfringens plasmids whilst providing a comprehensive understanding of species diversity.


Asunto(s)
Toxinas Bacterianas , Clostridium perfringens , Humanos , Toxinas Bacterianas/genética , Filogenia , Composición de Base , Análisis de Secuencia de ADN , ARN Ribosómico 16S , Plásmidos/genética
7.
Nat Commun ; 13(1): 1445, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301310

RESUMEN

Mobile genetic elements (MGEs) carrying antibiotic resistance genes (ARGs) disseminate ARGs when they mobilise into new bacterial hosts. The nature of such horizontal gene transfer (HGT) events between human gut commensals and pathogens remain poorly characterised. Here, we compare 1354 cultured commensal strains (540 species) to 45,403 pathogen strains (12 species) and find 64,188 MGE-mediated ARG transfer events between the two groups using established methods. Among the 5931 MGEs, we find 15 broad host range elements predicted to have crossed different bacterial phyla while also occurring in animal and environmental microbiomes. We experimentally demonstrate that predicted broad host range MGEs can mobilise from commensals Dorea longicatena and Hungatella hathewayi to pathogen Klebsiella oxytoca, crossing phyla simultaneously. Our work establishes the MGE-mediated ARG dissemination network between human gut commensals and pathogens and highlights broad host range MGEs as targets for future ARG dissemination management.


Asunto(s)
Especificidad del Huésped , Microbiota , Animales , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Especificidad del Huésped/genética , Humanos , Secuencias Repetitivas Esparcidas/genética , Microbiota/genética
8.
Aliment Pharmacol Ther ; 56(2): 192-208, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35611465

RESUMEN

BACKGROUND: From consumption of fermented foods and probiotics to emerging applications of faecal microbiota transplantation, the health benefit of manipulating the human microbiota has been exploited for millennia. Despite this history, recent technological advances are unlocking the capacity for targeted microbial manipulation as a novel therapeutic. AIM: This review summarises the current developments in microbiome-based medicines and provides insight into the next steps required for therapeutic development. METHODS: Here we review current and emerging approaches and assess the capabilities and weaknesses of these technologies to provide safe and effective clinical interventions. Key literature was identified through Pubmed searches with the following key words, 'microbiome', 'microbiome biomarkers', 'probiotics', 'prebiotics', 'synbiotics', 'faecal microbiota transplant', 'live biotherapeutics', 'microbiome mimetics' and 'postbiotics'. RESULTS: Improved understanding of the human microbiome and recent technological advances provide an opportunity to develop a new generation of therapies. These therapies will range from dietary interventions, prebiotic supplementations, single probiotic bacterial strains, human donor-derived faecal microbiota transplants, rationally selected combinations of bacterial strains as live biotherapeutics, and the beneficial products or effects produced by bacterial strains, termed microbiome mimetics. CONCLUSIONS: Although methods to identify and refine these therapeutics are continually advancing, the rapid emergence of these new approaches necessitates accepted technological and ethical frameworks for measurement, testing, laboratory practices and clinical translation.


Asunto(s)
Microbiota , Probióticos , Simbióticos , Trasplante de Microbiota Fecal , Humanos , Prebióticos , Probióticos/uso terapéutico
9.
Front Microbiol ; 12: 685935, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239510

RESUMEN

A growing number of experimental and computational approaches are illuminating the "microbial dark matter" and uncovering the integral role of commensal microbes in human health. Through this work, it is now clear that the human microbiome presents great potential as a therapeutic target for a plethora of diseases, including inflammatory bowel disease, diabetes and obesity. The development of more efficacious and targeted treatments relies on identification of causal links between the microbiome and disease; with future progress dependent on effective links between state-of-the-art sequencing approaches, computational analyses and experimental assays. We argue determining causation is essential, which can be attained by generating hypotheses using multi-omic functional analyses and validating these hypotheses in complex, biologically relevant experimental models. In this review we discuss existing analysis and validation methods, and propose best-practice approaches required to enable the next phase of microbiome research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA