Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Gene Ther ; 29(1-2): 81-93, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34257417

RESUMEN

Mutations in the gene for Retinitis Pigmentosa GTPase Regulator (RPGR) cause the X-linked form of inherited retinal degeneration, and the majority are frameshift mutations in a highly repetitive, purine-rich region of RPGR known as the OFR15 exon. Truncation of the reading frame in this terminal exon ablates the functionally important C-terminal domain. We hypothesized that targeted excision in ORF15 by CRISPR/Cas9 and the ensuing repair by non-homologous end joining could restore RPGR reading frame in a portion of mutant photoreceptors thereby correcting gene function in vivo. We tested this hypothesis in the rd9 mouse, a naturally occurring mutant line that carries a frameshift mutation in RPGRORF15, through a combination of germline and somatic gene therapy approaches. In germline gene-edited rd9 mice, probing with RPGR domain-specific antibodies demonstrated expression of full length RPGRORF15 protein. Hallmark features of RPGR mutation-associated early disease phenotypes, such as mislocalization of cone opsins, were no longer present. Subretinal injections of the same guide RNA (sgRNA) carried in AAV sgRNA and SpCas9 expression vectors restored reading frame of RPGRORF15 in a subpopulation of cells with broad distribution throughout the retina, confirming successful correction of the mutation. These data suggest that a simplified form of genome editing mediated by CRISPR, as described here, could be further developed to repair RPGRORF15 mutations in vivo.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Animales , Sistemas CRISPR-Cas , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Edición Génica , Ratones , Mutación , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/terapia
2.
Proc Natl Acad Sci U S A ; 110(51): 20831-6, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24302765

RESUMEN

Dysferlinopathies, most commonly limb girdle muscular dystrophy 2B and Miyoshi myopathy, are degenerative myopathies caused by mutations in the DYSF gene encoding the protein dysferlin. Studies of dysferlin have focused on its role in the repair of the sarcolemma of skeletal muscle, but dysferlin's association with calcium (Ca(2+)) signaling proteins in the transverse (t-) tubules suggests additional roles. Here, we reveal that dysferlin is enriched in the t-tubule membrane of mature skeletal muscle fibers. Following experimental membrane stress in vitro, dysferlin-deficient muscle fibers undergo extensive functional and structural disruption of the t-tubules that is ameliorated by reducing external [Ca(2+)] or blocking L-type Ca(2+) channels with diltiazem. Furthermore, we demonstrate that diltiazem treatment of dysferlin-deficient mice significantly reduces eccentric contraction-induced t-tubule damage, inflammation, and necrosis, which resulted in a concomitant increase in postinjury functional recovery. Our discovery of dysferlin as a t-tubule protein that stabilizes stress-induced Ca(2+) signaling offers a therapeutic avenue for limb girdle muscular dystrophy 2B and Miyoshi myopathy patients.


Asunto(s)
Señalización del Calcio , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Estrés Fisiológico , Animales , Antihipertensivos/farmacología , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Membrana Celular/patología , Diltiazem/farmacología , Disferlina , Proteínas de la Membrana/genética , Ratones , Ratones Mutantes , Contracción Muscular/efectos de los fármacos , Contracción Muscular/genética , Fibras Musculares Esqueléticas/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Necrosis/genética , Necrosis/metabolismo , Necrosis/patología
3.
Hum Mol Genet ; 22(4): 757-68, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23222475

RESUMEN

Mutations in several glycosyltransferases underlie a group of muscular dystrophies known as glycosylation-deficient muscular dystrophy. A common feature of these diseases is loss of glycosylation and consequent dystroglycan function that is correlated with severe pathology in muscle, brain and other tissues. Although glycosylation of dystroglycan is essential for function in skeletal muscle, whether glycosylation-dependent function of dystroglycan is sufficient to explain all complex pathological features associated with these diseases is less clear. Dystroglycan glycosylation is defective in LARGE(myd) (myd) mice as a result of a mutation in like-acetylglucosaminyltransferase (LARGE), a glycosyltransferase known to cause muscle disease in humans. We generated animals with restored dystroglycan function exclusively in skeletal muscle by crossing myd animals to a recently created transgenic line that expresses LARGE selectively in differentiated muscle. Transgenic myd mice were indistinguishable from wild-type littermates and demonstrated an amelioration of muscle disease as evidenced by an absence of muscle pathology, restored contractile function and a reduction in serum creatine kinase activity. Moreover, although deficits in nerve conduction and neuromuscular transmission were observed in myd animals, these deficits were fully rescued by muscle-specific expression of LARGE, which resulted in restored structure of the neuromuscular junction (NMJ). These data demonstrate that, in addition to muscle degeneration and dystrophy, impaired neuromuscular transmission contributes to muscle weakness in dystrophic myd mice and that the noted defects are primarily due to the effects of LARGE and glycosylated dystroglycan in stabilizing the endplate of the NMJ.


Asunto(s)
Músculo Esquelético/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Unión Neuromuscular/fisiopatología , Animales , Distroglicanos/metabolismo , Glicosilación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Destreza Motora , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/fisiopatología , Miocardio/metabolismo , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Especificidad de Órganos , Procesamiento Proteico-Postraduccional , Transmisión Sináptica
4.
J Biomed Biotechnol ; 2011: 210797, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22007139

RESUMEN

Muscular dystrophies are genetically diverse but share common phenotypic features of muscle weakness, degeneration, and progressive decline in muscle function. Previous work has focused on understanding how disruptions in the dystrophin-glycoprotein complex result in muscular dystrophy, supporting a hypothesis that the muscle sarcolemma is fragile and susceptible to contraction-induced injury in multiple forms of dystrophy. Although benign in healthy muscle, contractions in dystrophic muscle may contribute to a higher degree of muscle damage which eventually overwhelms muscle regeneration capacity. While increased susceptibility of muscle to mechanical injury is thought to be an important contributor to disease pathology, it is becoming clear that not all DGC-associated diseases share this supposed hallmark feature. This paper outlines experimental support for a function of the DGC in preventing muscle damage and examines the evidence that supports novel functions for this complex in muscle that when impaired, may contribute to the pathogenesis of muscular dystrophy.


Asunto(s)
Distrofina/metabolismo , Glicoproteínas/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Distrofias Musculares/fisiopatología , Sarcolema/metabolismo , Animales , Humanos , Laminina/metabolismo , Ratones , Ratones Endogámicos mdx/metabolismo , Transducción de Señal , Estrés Mecánico
5.
Am J Physiol Cell Physiol ; 299(6): C1430-40, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20844247

RESUMEN

The glycosylation of dystroglycan is required for its function as a high-affinity laminin receptor, and loss of dystroglycan glycosylation results in congenital muscular dystrophy. The purpose of this study was to investigate the functional defects in slow- and fast-twitch muscles of glycosylation-deficient Large(myd) mice. While a partial alteration in glycosylation of dystroglycan in heterozygous Large(myd/+) mice was not sufficient to alter muscle function, homozygous Large(myd/myd) mice demonstrated a marked reduction in specific force in both soleus and extensor digitorum longus (EDL) muscles. Although EDL muscles from Large(myd/myd) mice were highly susceptible to lengthening contraction-induced injury, Large(myd/myd) soleus muscles surprisingly showed no greater force deficit compared with wild-type soleus muscles even after five lengthening contractions. Despite no increased susceptibility to injury, Large(myd/myd) soleus muscles showed loss of dystroglycan glycosylation and laminin binding activity and dystrophic pathology. Interestingly, we show that soleus muscles have a markedly higher sarcolemma expression of ß(1)-containing integrins compared with EDL and gastrocnemius muscles. Therefore, we conclude that ß(1)-containing integrins play an important role as matrix receptors in protecting muscles containing slow-twitch fibers from contraction-induced injury in the absence of dystroglycan function, and that contraction-induced injury appears to be a separable phenotype from the dystrophic pathology of muscular dystrophy.


Asunto(s)
Distroglicanos/metabolismo , Contracción Muscular , Músculo Esquelético/lesiones , Músculo Esquelético/fisiopatología , Distrofia Muscular Animal/metabolismo , Animales , Glicosilación , Integrina beta1/metabolismo , Laminina/metabolismo , Ratones , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/patología , Músculo Esquelético/patología , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Ratas , Ratas Sprague-Dawley , Sarcolema/metabolismo , Sarcolema/patología
6.
J Neurosci ; 28(5): 1109-17, 2008 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-18234889

RESUMEN

Unlike mammals, teleost fish can regenerate an injured retina, restoring lost visual function. Little is known of the molecular events that underlie retina regeneration. We previously found that in zebrafish, retinal injury stimulates Müller glia to generate multipotent alpha1-tubulin (alpha1T) and pax6-expressing progenitors for retinal repair. Here, we report the identification of a critical E-box in the alpha1T promoter that mediates transactivation by achaete-scute complex-like 1a (ascl1a) during retina regeneration. More importantly, we show that ascl1a is essential for retina regeneration. Within 4 h after retinal injury, ascl1a is induced in Müller glia. Knockdown of ascl1a blocks the induction of alpha1T and pax6 as well as Müller glial proliferation, consequently preventing the generation of retinal progenitors and their differentiated progeny. These data suggest ascl1a is required to convert quiescent Müller glia into actively dividing retinal progenitors, and that ascl1a is a key regulator in initiating retina regeneration.


Asunto(s)
Proteínas del Citoesqueleto/genética , Secuencias Hélice-Asa-Hélice/genética , Neuronas/fisiología , Regeneración/genética , Retina/fisiología , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Línea Celular , Proteínas del Citoesqueleto/biosíntesis , Proteínas del Citoesqueleto/fisiología , Neuroglía/metabolismo , Neuroglía/fisiología , Regiones Promotoras Genéticas , Regeneración/fisiología , Transducción de Señal/genética , Pez Cebra , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/fisiología
7.
Biol Open ; 6(6): 881-890, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28495965

RESUMEN

Protein inhibitor of activated Stat 3 (Pias3) is implicated in guiding specification of rod and cone photoreceptors through post-translational modification of key retinal transcription factors. To investigate its role during retinal development, we deleted exon 2-5 of the mouse Pias3 gene, which resulted in complete loss of the Pias3 protein. Pias3-/- mice did not show any overt phenotype, and retinal lamination appeared normal even at 18 months. We detected reduced photopic b-wave amplitude by electroretinography following green light stimulation of postnatal day (P)21 Pias3-/- retina, suggesting a compromised visual response of medium wavelength (M) cones. No change was evident in response of short wavelength (S) cones or rod photoreceptors until 7 months. Increased S-opsin expression in the M-cone dominant dorsal retina suggested altered distribution of cone photoreceptors. Transcriptome profiling of P21 and 18-month-old Pias3-/- retina revealed aberrant expression of a subset of photoreceptor genes. Our studies demonstrate functional redundancy in SUMOylation-associated transcriptional control mechanisms and identify a specific, though limited, role of Pias3 in modulating spatial patterning and optimal function of cone photoreceptor subtypes in the mouse retina.

8.
Cell Rep ; 17(5): 1399-1413, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27783952

RESUMEN

Microtubule actin crosslinking factor 1 (MACF1) plays a role in the coordination of microtubules and actin in multiple cellular processes. Here, we show that MACF1 is also critical for ciliogenesis in multiple cell types. Ablation of Macf1 in the developing retina abolishes ciliogenesis, and basal bodies fail to dock to ciliary vesicles or migrate apically. Photoreceptor polarity is randomized, while inner retinal cells laminate correctly, suggesting that photoreceptor maturation is guided by polarity cues provided by cilia. Deletion of MACF1 in adult photoreceptors causes reversal of basal body docking and loss of outer segments, reflecting a continuous requirement for MACF1 function. MACF1 also interacts with the ciliary proteins MKKS and TALPID3. We propose that a disruption of trafficking across microtubles to actin filaments underlies the ciliogenesis defect in cells lacking MACF1 and that MKKS and TALPID3 are involved in the coordination of microtubule and actin interactions.


Asunto(s)
Polaridad Celular , Cilios/metabolismo , Proteínas de Microfilamentos/deficiencia , Organogénesis , Retina/citología , Retina/metabolismo , Animales , Animales Recién Nacidos , Cuerpos Basales/metabolismo , Cuerpos Basales/ultraestructura , Diferenciación Celular , Centriolos/metabolismo , Centriolos/ultraestructura , Cilios/ultraestructura , Homeostasis , Proteínas de Microfilamentos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mutación/genética , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/crecimiento & desarrollo
9.
Matrix Biol ; 29(2): 143-51, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19800000

RESUMEN

The biological activities of the laminin alpha2 chain LG4-5 module result from interactions with cell surface receptors, such as heparan sulfate proteoglycans and alpha-dystroglycan. In this study, heparin and alpha-dystroglycan binding sequences were identified using 42 overlapping synthetic peptides from the LG4-5 module and using recombinant LG4-5 protein (rec-alpha2LG4-5). Physiological activities of the active peptides were also examined in explants of submandibular glands. Heparin binding screens showed that the A2G78 peptide (GLLFYMARINHA) bound to heparin and prevented its binding to rec-alpha2LG4-5. Furthermore, alanine substitution of the arginine residue in the A2G78 site on rec-alpha2LG4-5 decreased heparin binding activity. When alpha-dystroglycan binding of the peptides was screened, two peptides, A2G78 and A2G80 (VQLRNGFPYFSY), bound alpha-dystroglycan. A2G78 and A2G80 also inhibited alpha-dystroglycan binding of rec-alpha2LG4-5. A2G78 and A2G80 specifically inhibited end bud formation of submandibular glands in culture. These results suggest that the A2G78 and A2G80 sites play functional roles as heparan sulfate- and alpha-dystroglycan-binding sites in the module. These peptides are useful for elucidating molecular mechanisms of heparan sulfate- and/or alpha-dystroglycan-mediated biological functions of the laminin alpha2 chain.


Asunto(s)
Distroglicanos/metabolismo , Laminina/química , Laminina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Análisis Mutacional de ADN , Distroglicanos/genética , Heparina/metabolismo , Humanos , Laminina/genética , Ratones , Datos de Secuencia Molecular , Morfogénesis/fisiología , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Glándula Submandibular/anatomía & histología , Glándula Submandibular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA