Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(40): 16426-16434, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37750677

RESUMEN

Metal-organic frameworks (MOFs) are emerging as promising candidates for electrochemical glucose sensing owing to their ordered channels, tunable chemistry, and atom-precision metal sites. Herein, the efficient nonenzymatic electrochemical glucose sensing is achieved by taking advantage of Ni(II)-based metal-organic frameworks (Ni(II)-MOFs) and acquiring the ever-reported fastest response time. Three Ni(II)-MOFs ({[Ni6L2(H2O)26]4H2O}n (CTGU-33), {Ni(bib)1/2(H2L)1/2(H2O)3}n (CTGU-34), {Ni(phen)(H2L)1/2(H2O)2}n (CTGU-35)) have been synthesized for the first time, which use benzene-1,2,3,4,5,6-hexacarboxylic acid (H6L) as an organic ligand and introduce 1,4-bis(1-imidazoly)benzene (bib) or 1,10-phenanthroline (phen) as spatially auxiliary ligands. Bib and phen convert the coordination mode of CTGU-33, affording structural dimensions from 2D of CTGU-33 to 3D of CTGU-34 or 1D of CTGU-35. By tuning the dimension of the skeleton, CTGU-34 with 3D interconnected channels exhibits an ultrafast response of less than 0.4 s, which is superior to the existing nonenzymatic electrochemical sensors. Additionally, a low detection limit of 0.12 µM (S/N = 3) and a high sensitivity of 1705 µA mM-1 cm-2 are simultaneously achieved. CTGU-34 further showcases desirable anti-interference and cycling stability, which demonstrates a promising application prospect in the real-time detection of glucose.

2.
Adv Sci (Weinh) ; 11(25): e2400569, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38666385

RESUMEN

The photoreceptor cilium is vital for maintaining the structure and function of the retina. However, the molecular mechanisms underlying the photoreceptor cilium integrity and retinal homeostasis are largely unknown. Herein, it is shown that kinesin family member 11 (KIF11) localizes at the transition zone (connecting cilium) of the photoreceptor and plays a crucial role in orchestrating the cilium integrity. KIF11 depletion causes malformations of both the photoreceptor ciliary axoneme and membranous discs, resulting in photoreceptor degeneration and the accumulation of drusen-like deposits throughout the retina. Mechanistic studies show that the stability of KIF11 is regulated by an interplay between its UFMylation and ubiquitination; UFMylation of KIF11 at lysine 953 inhibits its ubiquitination by synoviolin 1 and thereby prevents its proteasomal degradation. The lysine 953-to-arginine mutant of KIF11 is more stable than wild-type KIF11 and also more effective in reversing the ciliary and retinal defects induced by KIF11 depletion. These findings identify a critical role for KIF11 UFMylation in the maintenance of photoreceptor cilium integrity and retinal homeostasis.


Asunto(s)
Cilios , Homeostasis , Cinesinas , Retina , Cinesinas/metabolismo , Cinesinas/genética , Animales , Ratones , Homeostasis/fisiología , Cilios/metabolismo , Cilios/genética , Retina/metabolismo , Modelos Animales de Enfermedad , Ubiquitinación , Humanos , Degeneración Retiniana/metabolismo , Degeneración Retiniana/genética
3.
Dalton Trans ; 52(23): 7819-7827, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37212634

RESUMEN

Transition metal sulfides are low-cost oxygen evolution reaction (OER) electrocatalysts that can potentially substitute noble metal catalysts. However, the adsorption process of their OER is impeded by their intrinsic poor catalytic activity. Constructing heterojunction and vacancy defects in transition metal sulfides is an efficient method to promote the process of oxygen evolution. Herein, a facile approach based on in situ sulfurization of metal-organic gels (MOGs) and a short-time plasma treatment was developed to fabricate vacancy-modified polymetallic sulfides heterojunction. The synergistic effect of the multi-component heterojunction and sulfur vacancy contributed greatly to improving the electron migration efficiency and OER ability of the electrocatalyst. As a result, the optimum oxygen evolution activity was achieved with appropriate surface vacancy concentrations by regulating the plasma radio frequency powers. The plasma-treated catalyst under 400 W showed the best OER performance (lower overpotential of 235 mV in 1 M KOH solution with the Tafel slope of 31 mV dec-1) and good durability over 11 h of chronopotentiometry testing. This work sheds new light on constructing multimetal-based heterojunction electrocatalysts with rich vacancy defects for oxygen evolution reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA