RESUMEN
Studies on the differences between chiral pesticide enantiomers have caused widespread concern in the last decade. In the current work, the selective behaviors and different biological activities of paclobutrazol enantiomers during Chinese cabbage pickling process were evaluated. Results of degradation kinetics indicated that when paclobutrazol reside in raw material (Chinese cabbage) and was introduced into the pickling process, the degradation rates of the two paclobutrazol enantiomers were significantly different, the half-lives of (2R, 3R)-paclobutrazol (R-paclobutrazol) and (2S, 3S)-paclobutrazol (S-paclobutrazol) were 18.24 and 6.19 d, respectively. Besides, the conversion between the two enantiomers could also be observed, and the conversion rate of R-paclobutrazol to S-paclobutrazol was slower than that of reverse process. In addition, from the analysis of 16S rRNA and ITS sequencing, we inferred that the degradation of paclobutrazol was probably due to the presence of Pseudomonas and Serratia. Moreover, there has a significant difference in biological activity between R-paclobutrazol and S-paclobutrazol and shown an obviously enantiomeric effects on microbial community composition of pickling system. Besides, the analysis of microbial community displayed R-paclobutrazol might inhibit the growth of Erwinia (a sort of plant pathogens). Results from this study served to enhance our understanding of chiral pesticide residues on food safety and the potential risks to human health.
Asunto(s)
Brassica , Plaguicidas , Humanos , ARN Ribosómico 16S , EstereoisomerismoRESUMEN
When a rumor appears on social networks, the media of relevant departments need reaction time to make an authoritative announcement. Considering the effects of the media report and time delay on a rumor spreading, and the different attitudes of individuals towards media reports. We proposed a susceptible-expose-infective-media-remover (SEIMR) rumor propagation model with media reports and time delay. Firstly, the basic reproduction number of the model is obtained. Secondly, the positivity, boundedness and existence of the solutions of the model are analyzed. Then, the local asymptotic stability of the rumor free equilibrium and the boundary equilibriums is proved, and the global asymptotic stability of the equilibriums is proved by constructing Lyapunov function when the time delay is zero. Besides, the prevention and control effects of the media report on rumor spreading and the effect of time delay are analyzed. The shorter time delay in media report and the greater the impact of the media report, the more effective the suppression of rumors will be. Finally, the accuracy of the theoretical results as well as the effects of different parameters of the model have been verified through numerical simulations, and the effectiveness of the SEIMR model has been verified via comparative experiments.
RESUMEN
OBJECTIVE: Spontaneous cervicocerebral artery dissection (sCCD) is an important cause of ischaemic stroke that often occurs in young and middle aged patients. The purpose of this study was to investigate the correlation between tortuosity of the carotid artery and sCCD. METHODS: Patients with confirmed sCCD who underwent computed tomography angiography (CTA) were reviewed retrospectively. Age and sex matched patients having CTA were used as controls. The tortuosity indices of the cervical arteries were measured from the CTA images. The carotid siphon and the extracranial internal carotid artery (ICA) were evaluated according to morphological classification. The carotid siphons were classified into five types. The extracranial ICA was categorised as simple tortuosity, coiling or kinking. Independent risk factors for sCCD were investigated using multivariable analysis. RESULTS: The study included sixty-six patients with sCCD and 66 controls. There were no differences in vascular risk factors between the two groups. The internal carotid tortuosity index (ICTI) (25.24 ± 12.37 vs. 15.90 ± 8.55, respectively; p < .001) and vertebral tortuosity index (VTI) (median 11.28; interquartile range [IQR] 6.88, 18.80 vs. median 8.38; IQR 6.02, 12.20, respectively; p = .008) were higher in the patients with sCCD than in the controls. Type III and Type IV carotid siphons were more common in the patients with sCCD (p = .001 and p < .001, respectively). The prevalence of any vessel tortuosity, coiling and kinking of the extracranial ICA was higher in the patients with sCCD (p < .001, p = .018 and p = .006, respectively). ICTI (odds ratio [OR] 2.964; p = .026), VTI (OR 5.141; p = .009), and Type III carotid siphons (OR 4.654; p = .003) were independently associated with the risk of sCCD. CONCLUSION: Arterial tortuosity is associated with sCCD, and greater tortuosity of the cervical artery may indicate an increased risk of arterial dissection.
Asunto(s)
Arterias/anomalías , Disección de la Arteria Carótida Interna/etiología , Arteria Carótida Interna/anomalías , Inestabilidad de la Articulación/complicaciones , Enfermedades Cutáneas Genéticas/complicaciones , Malformaciones Vasculares/complicaciones , Adulto , Anciano , Arterias/diagnóstico por imagen , Arteria Carótida Interna/diagnóstico por imagen , Disección de la Arteria Carótida Interna/diagnóstico por imagen , Angiografía Cerebral , Angiografía por Tomografía Computarizada , Femenino , Humanos , Inestabilidad de la Articulación/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Enfermedades Cutáneas Genéticas/diagnóstico por imagen , Malformaciones Vasculares/diagnóstico por imagenRESUMEN
Metalaxyl and Metalaxyl-M are the fungicides that widely used in many countries. In this study, the environmental behaviors between metalaxyl and metalaxyl-M in Tubifex tubifex (T. tubifex) were quantitative analyzed by using a high performance liquid chromatography with photo-diode-array-detector (HPLC-DAD). Results demonstrated that there was no significant difference (p > 0.05) in the concentration of metalaxyl and metalaxyl-M in T. tubifex during the exposure process. However, the dissipation behaviors of metalaxyl and metalaxyl-M in T. tubifex were different (p < 0.05) during the non-exposure culture process. Meanwhile, the toxic effects were also evaluated by comparing the different influences of these two compounds on related physiological indicators, and functional enzyme activities. The survival rates of T. tubifex were 63.33 ± 15.28% (20 mg L-1), 63.33 ± 5.77% (200 mg L-1) treated with metalaxyl and were 50.00 ± 10.00% (20 mg L-1), 46.67 ± 11.55 (200 mg L-1) treated with metalaxyl-M at the non-exposure culture process. The autotomy rates were increased significantly compared with the initial in all treatments. Besides, the activities of CAT, SOD, and GST in T. tubifex were also inhibited by metalaxyl and metalaxyl-M treatments. Finally, the high-throughput transcriptome sequencing technology was applied to investigate the metabolic pathways of target analytes in T. tubifex, and results proved that the metabolic pathways associated with human diseases (such as viral myocarditis) were up-regulated expression for metalaxyl and metalaxyl-M treatments, and metalaxyl-M up-regulated more significantly. All the results demonstrated that metalaxyl-M had a higher toxicity than metalaxyl on T. tubifex.
Asunto(s)
Alanina/análogos & derivados , Fungicidas Industriales/toxicidad , Oligoquetos/fisiología , Alanina/toxicidad , Animales , Cromatografía Líquida de Alta Presión , Oligoquetos/efectos de los fármacosRESUMEN
Fe3O4@MIL-100 (Fe)/PEI are used for the first time as an adsorbent material for the extraction of pesticide residues (epoxiconazole, flusilazole, tebuconazole, and triadimefon) from food matrices. The adsorbent proposed (Fe3O4@MIL-100(Fe)/PEI) was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), thermogravimetric (TG) analysis, and vibrating sample magnetometer (VSM) techniques to evaluate the properties of the sorbent. Then, the Fe3O4@MIL-100 (Fe)/PEI was employed for the quantification of the four triazole fungicides in fruits and vegetables (apple, orange, tomato, cabbage, and cucumber) using HPLC-UV for separation and detection. During the extraction process, the main parameters such as amount of adsorbent, extraction time, pH value, ionic strength, eluting solvent, and eluting volume were optimized. Under the optimum conditions, good linearity of this method was observed for all analytes, with correlation coefficients (R2) ≥ 0.9908. The limits of detection (LODs) ranged from 0.021-3.04 µg kg-1. The extraction recoveries of the four triazole fungicides varied from 73.9 to 109.4% with relative standard deviations (RSD) in the range 0.5 to 6.2%. Compared with other MOFs, the modification of Fe3O4@MIL-100 (Fe) with PEI shows high efficient adsorption due to the combined benefits of MIL-100 (Fe) and PEI. The material is easily synthesized, has good stability, and is of low cost. Graphical abstract.
Asunto(s)
Contaminación de Alimentos/análisis , Fungicidas Industriales/aislamiento & purificación , Estructuras Metalorgánicas/química , Residuos de Plaguicidas/aislamiento & purificación , Polietileneimina/química , Triazoles/aislamiento & purificación , Adsorción , Cromatografía Líquida de Alta Presión , Fungicidas Industriales/análisis , Fungicidas Industriales/química , Límite de Detección , Nanopartículas de Magnetita/química , Magnoliopsida/química , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química , Extracción en Fase Sólida/métodos , Espectrofotometría Ultravioleta , Triazoles/análisis , Triazoles/químicaRESUMEN
Pesticide residues in food can bring potential risks to human health and has been widely concerned in recent years. In the current study, the influence of paclobutrazol, which resided in raw material (grape) on wine fermentation process, were investigated. The degradation kinetic results indicated that the enantiomers of paclobutrazol not be degraded during 30 days of fermentation process. In order to achieve the fermented microorganism information of diversity, community composition, and function, the analysis of 16S rRNA and ITS sequencing were performed. Results demonstrated that the dominant microorganisms multiplied and the microbial diversity in the samples decreased as the fermentation process progresses. Furthermore, the paclobutrazol stimulated the growth of Pichia, which was observed during wine fermentation and which may have an underlying impact on the quality of the wine. The above results inferred that paclobutrazol residue could disturb the microbial community stability during wine fermentation, and the stable existence of paclobutrazol will cause potential risks to food safety and human health. In this work, we have successfully devised a method to investigate the influences of pesticide residues in raw materials during food processing and conclusions from this study could provide basis for dietary risk assessment.
Asunto(s)
Fermentación , Triazoles/farmacología , Vino , Exposición Dietética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Residuos de Plaguicidas/metabolismo , Pichia/genética , Pichia/crecimiento & desarrollo , Pichia/metabolismo , ARN Ribosómico 16S/genética , Medición de Riesgo , Estereoisomerismo , Triazoles/química , Triazoles/toxicidadRESUMEN
In recent years, pesticide residues in food have increasingly become the focus of public attention. However, the standard system of pesticide maximum residue limits in fermented food is imperfect, which can lead to potential safety risks to consumers. In this context, the aim of the study was to assess the potential effects of paclobutrazol residue on the yogurt fermentation process. We examined the stereoselective behaviors of the 2 paclobutrazol enantiomers from the perspective of chirality during the yogurt fermentation process. The results indicated that no significant degradation occurred for either of the 2 enantiomers (2R, 3R-paclobutrazol, 2S, 3S-paclobutrazol), and no visible enantiomer conversion behavior was observed. In addition, the reason paclobutrazol did not significantly degrade was explained from the perspective of the microbial function. Results from 16S rRNA sequencing indicated that paclobutrazol significantly affected the microbial composition and inhibited metabolic function of microorganisms to exogenous substances, which impeded the degradation of residual pesticide in yogurt. Furthermore, the stable residue of exogenous substance may cause potential food safety problems. Microbial α-diversity analysis indicated that fermentation time played a more important role on diversity than did paclobutrazol concentration. Moreover, Staphylococcus was found in yogurt after treatment with paclobutrazol; Staphylococcus aureus causes dangerous infectious diseases in humans. We devised a method to investigate the presence of pesticide residues during food fermentation and provided a theoretical basis for food safety assessment.
Asunto(s)
Contaminación de Alimentos , Residuos de Plaguicidas/análisis , Triazoles/análisis , Yogur/análisis , Animales , Fermentación , Inocuidad de los Alimentos , Humanos , ARN Ribosómico 16S/análisis , EstereoisomerismoRESUMEN
Paclobutrazol (PBZ) is a kind of chiral pesticide, which is a plant growth regulator and has fungicidal activity. Because of the steric-hindrance effect, there are two enantiomers (2S, 3S; 2R, 3R) in the production. This research studied on the dissipation behavior of chiral pesticide PBZ in the brine during the Chinese cabbage pickled process by phase column-high performance liquid chromatography (HPLC). The result demonstrated the PBZ enantiomers had the different dissipation in the brine. The study on the behavior of chiral pesticide PBZ in food may provide more sufficient data and information for understanding the potential risk in food and evaluating the environmental pollution at the enantiomer level.
RESUMEN
Background: The preoperative prediction of the pathological nuclear grade of clear cell renal cell carcinoma (CCRCC) is crucial for clinical decision making. However, radiomics features from one or two computed tomography (CT) phases are required to predict the CCRCC grade, which reduces the predictive performance and generalizability of this method. We aimed to develop and externally validate a multiparameter CT radiomics-based model for predicting the World Health Organization/International Society of Urological Pathology (WHO/ISUP) grade of CCRCC. Methods: A total of 500 CCRCC patients at The First, Second, and Yongchuan Hospitals of Chongqing Medical University between January 2016 and May 2022 were retrospectively enrolled in this study. The patients were divided into the training set (n=268), internal testing set (n=115), and two external testing sets (testing set 1, n=62; testing set 2, n=55). Radiomics features were extracted from multi-phase CT images, and radiomics signatures (RSs) were created by least absolute shrinkage and selection operator (LASSO) regression. In addition, a clinical model was developed. A combined model was also established that integrated the RSs with the clinical factors, and was visualized via a nomogram. The performance of the established model was assessed using area under the curve (AUC) values, a calibration curve analysis, and a decision curve analysis (DCA). Results: Among the four RSs and the clinical model, the RS-Triphasic had the best predictive performance with AUCs of 0.88 [95% confidence interval (CI): 0.85-0.91] and 0.84 (95% CI: 0.74-0.95) in the training and testing sets, respectively, and 0.82 (95% CI: 0.72-0.93) and 0.82 (95% CI: 0.71-0.93) in external testing sets 1 and 2. Integrating the RS-Triphasic, RS-corticomedullary phase (CMP), RS-nephrographic phase (NP), RS-non-contrast phase (NCP) with the clinical risk factors, a combined model was established with AUCs of 0.92 (95% CI: 0.89-0.94), 0.86 (95% CI: 0.76-0.95), 0.84 (95% CI: 0.73-0.95), and 0.82 (95% CI: 0.70-0.94) for the training, internal testing, and external testing sets 1 and 2, respectively. The DCA indicated that the nomogram had a greater overall net benefit than the clinical and radiomics models. Conclusions: The multiparameter CT RS fusion-based model had high accuracy in differentiating between high- and low-grade CCRCC preoperatively. Thus, it has great potential as a useful tool for personalized treatment planning and clinical decision making for CCRCC patients.
RESUMEN
Background: Preoperative computed tomography (CT)-guided localization of small pulmonary nodules (SPNs) is the major approach for accurate intraoperative visualization in video-assisted thoracoscopic surgery (VATS). However, this interventional procedure has certain risks and may challenge to less experienced junior doctors. This study aims to evaluate the feasibility and efficacy of robotic-assisted CT-guided preoperative pulmonary nodules localization with the modified hook-wire needles before VATS. Methods: A total of 599 patients with 654 SPNs who preoperatively accepted robotic-assisted CT-guided percutaneous pulmonary localization were respectively enrolled and compared to 90 patients with 94 SPNs who underwent the conventional CT-guided manual localization. The clinical and imaging data including patients' basic information, pulmonary nodule features, location procedure findings, and operation time were analyzed. Results: The localization success rate was 96.64% (632/654). The mean time required for marking was 22.85±10.27 min. Anchor of dislodgement occurred in 2 cases (0.31%). Localization-related complications included pneumothorax in 163 cases (27.21%), parenchymal hemorrhage in 222 cases (33.94%), pleural reaction in 3 cases (0.50%), and intercostal vascular hemorrhage in 5 cases (0.83%). Localization and VATS were performed within 24 hours. All devices were successfully retrieved in VATS. Histopathological examination revealed 166 (25.38%) benign nodules and 488 (74.62%) malignant nodules. For patients who received localizations, VATS spent a significantly shorter time, especially the segmentectomy group (93.61±35.72 vs. 167.50±40.70 min, P<0.001). The proportion of pneumothorax in the robotic-assisted group significantly decreased compared with the conventional manual group (27.21% vs. 43.33%, P=0.002). Conclusions: Robotic-assisted CT-guided percutaneous pulmonary nodules hook-wire localization could be effectively helpful for junior less experienced interventional physicians to master the procedure and potentially increase precision.
RESUMEN
The residue of mulch film is a crucial source of microplastics (MPs) in agricultural fields. The effects of mulch film-derived MPs on the environmental behavior of pesticides in agriculture remain unclear. In the present study, the effects of MPs of different sizes (5 mm, 1 mm, 30 µm, and 0.3 µm) at environmentally relevant concentrations on pesticide transport were evaluated, and the mechanism was explored with respect to adsorption and pore structure using fluorescence visualization, the extended Derjaguin-Landau-Verwey-Overbeek model, and microcomputed tomography. MPs were found to be retained in the soil due to size limitation, pore capture, and surface adhesion. The presence of mm-sized MPs (5 and 1 mm) at a concentration of 0.25 % inhibited the leaching behavior of atrazine, metolachlor, and tebuconazole. MPs did not significantly alter the pesticide adsorption ability of the soil. The reduced leaching originated from the impact of MPs on soil pore structure. Specifically, the porosity increased by 16.2-25.0 %, and the connectivity decreased by 34.5 %. These results demonstrate that mm-sized MPs inhibit pesticide leaching by obstructing the pores and altering the transport pathways, thereby potentially elevating environmental risks, particularly to the soil ecosystem.
RESUMEN
PURPOSE: To evaluate atherosclerotic plaque prevalence and characteristics between left and right cervicocephalic arteries and between anterior and posterior circulation stroke (ACS and PCS). METHODS: This retrospective study included 284 patients with acute ischemic stroke (199 ACS and 85 PCS) involving large-artery atherosclerosis or small-artery occlusion. We assessed atherosclerotic plaque prevalence and characteristics (plaque type, plaque surface morphology, plaque distribution, location of calcified nodules and plaque thickness) in each segment and their comparisons between left and right arteries and between ACS and PCS. RESULTS: The left subclavian artery (L-SA), common carotid artery (L-CCA) and intracranial vertebral artery (L-IVA) had significantly higher prevalence of atherosclerotic plaque than the right (R) corresponding arteries (70.1% versus 59.5%, P = 0.008), (48.1% versus 28.9%, P < 0.001), (23.9% versus 16%, P = 0.018), respectively. L-SA had a higher prevalence of mixed plaque (non-calcified > calcified) (19.6% versus 16.4%) and noncalcified plaque (51.9% versus 31.7%), and a lower prevalence of calcified plaque (8.9% versus 23.3%) and mixed plaque (calcified > non-calcified) (19.6% versus 28.6%) than R-SA, P < 0.001. The distribution of plaque type in the SA and extracranial vertebral artery (EVA) were significantly different between ACS and PCS. The soft plaque thickness of SA in PCS was significantly greater than that in ACS (3.85 ± 1.27 versus 3.51 ± 1.04, P = 0.032). CONCLUSIONS: Atherosclerotic plaque prevalence and characteristics vary in different segments, sides and between ACS and PCS. These differences should be noted during plaque diagnosis.
Asunto(s)
Isquemia Encefálica , Placa Aterosclerótica , Accidente Cerebrovascular , Arterias Carótidas , Humanos , Placa Aterosclerótica/diagnóstico por imagen , Prevalencia , Estudios Retrospectivos , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/epidemiologíaRESUMEN
PURPOSE: To investigate the predictive performance of machine learning-based CT radiomics for differentiating between low- and high-nuclear grade of clear cell renal cell carcinomas (CCRCCs). METHODS: This retrospective study enrolled 406 patients with pathologically confirmed low- and high-nuclear grade of CCRCCs according to the WHO/ISUP grading system, which were divided into the training and testing cohorts. Radiomics features were extracted from nephrographic-phase CT images using PyRadiomics. A support vector machine (SVM) combined with three feature selection algorithms such as least absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE), and ReliefF was performed to determine the most suitable classification model, respectively. Clinicoradiological, radiomics, and combined models were constructed using the radiological and clinical characteristics with significant differences between the groups, selected radiomics features, and a combination of both, respectively. Model performance was evaluated by receiver operating characteristic (ROC) curve, calibration curve, and decision curve analyses. RESULTS: SVM-ReliefF algorithm outperformed SVM-LASSO and SVM-RFE in distinguishing low- from high-grade CCRCCs. The combined model showed better prediction performance than the clinicoradiological and radiomics models (p < 0.05, DeLong test), which achieved the highest efficacy, with an area under the ROC curve (AUC) value of 0.887 (95% confidence interval [CI] 0.798-0.952), 0.859 (95% CI 0.748-0.935), and 0.828 (95% CI 0.731-0.929) in the training, validation, and testing cohorts, respectively. The calibration and decision curves also indicated the favorable performance of the combined model. CONCLUSION: A combined model incorporating the radiomics features and clinicoradiological characteristics can better predict the WHO/ISUP nuclear grade of CCRCC preoperatively, thus providing effective and noninvasive assessment.
RESUMEN
OBJECTIVE: This study aims to develop and validate a CT-based radiomics nomogram integrated with clinic-radiological factors for preoperatively differentiating high-grade from low-grade clear cell renal cell carcinomas (CCRCCs). METHODS: 370 patients with complete clinical, pathological, and CT image data were enrolled in this retrospective study, and were randomly divided into training and testing sets with a 7:3 ratio. Radiomics features were extracted from nephrographic phase (NP) contrast-enhanced images, and then a radiomics model was constructed by the selected radiomics features using a multivariable logistic regression combined with the most suitable feature selection algorithm determined by the comparison among least absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE) and ReliefF. A clinical model was established using clinical and radiological features. A radiomics nomogram was constructed by integrating the radiomics signature and independent clinic-radiological features. Performance of these three models was assessed using receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA). RESULTS: Using multivariate logistic regression analysis, three clinic-radiological features including intratumoral necrosis (OR=3.00, 95% CI=1.30-6.90, p=0.049), intratumoral angiogenesis (OR=3.28, 95% CI=1.22-8.78, p=0.018), and perinephric metastasis (OR=2.90, 95% CI=1.03-8.17, p=0.044) were found to be independent predictors of WHO/ISUP grade in CCRCC. Incorporating the above clinic-radiological predictors and radiomics signature constructed by LASSO, a CT-based radiomics nomogram was developed, and presented better predictive performance than clinic-radiological model and radiomics signature model, with an AUC of 0.891 (95% CI=0.832-0.962) and 0.843 (95% CI=0.718-0.975) in the training and testing sets, respectively. DCA indicated that the nomogram has potential clinical usefulness. CONCLUSION: The CT-based radiomics nomogram is a promising tool to predict WHO/ISUP grade of CCRCC preoperatively and noninvasively.
RESUMEN
A novel magnetic solid-phase extraction technique coupled to ultraperformance liquid chromatography has been developed for separation and preconcentration of four sulfonylurea herbicides (sulfosulfuron, bensulfuron-methyl, pyrazosulfuron-ethyl and halosulfuro-methyl) in aqueous samples. The key point of this method was the application of a novel magnetic nanomaterial that composed of a low eutectic solvent as a shell coated on the magnetic core modified by polydopamine. The extensive active sites outside the low eutectic solvent can effectively adsorb the target herbicide in the extraction process. The obtained magnetic adsorbent was characterized with fourier transform infrared spectrometry, scanning electron microscopy and vibrating sample magnetometer. The influence parameters relevant to this method were optimized. Under the optimum conditions, good linearities could be obtained within the range of 1.0-200 µg L-1 for all analytes, with correlation coefficients ≥0.9908. The limit of detections of the method was between 0.0074 and 0.0100 µg L-1 and the relative standard deviations were 1.1-3.6%. The enrichment factor is 66.6. In the final experiment, the proposed method was successfully applied to the analysis of sulfonylurea herbicides residue in environment and drinking-water samples, and the obtained recoveries were between 70.6% and 109.4%.
RESUMEN
In this work, a new analytical method based on polydopamine functionalized magnetic graphene (PDA@MG) adsorbent material has been developed to determine three triazole fungicides in water samples. As previous step, a novel polydopamine functionalized PDA@MG adsorbent material has been successfully prepared, which was characterized by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). Based on this novel material, a new magnetic solid phase extraction (MSPE) method coupled with high performance liquid chromatography (HPLC) has been established for the determination of triazole fungicides in water samples. The main factors which could affect the experimental results were optimized. Under the optimal conditions, good linarites has been achieved in the range of 0.2-50 µg L-1, with the correlation coefficients (R2) were between 0.9962 and 0.9996. The limits of detections (LODs) were 0.0048-0.0084 µg L-1, and the relative standard deviations (RSDs) were between 1.7% and 4.8%. In addition, enrichment factors (EFs) were 572-916 times, which showed triazole fungicides residues could be accurately extracted and analyzed in this way. In the final experiment, the established method was applied to the detection of target analyzes in water samples. Satisfied results could be obtained for tebuconazole, propiconazole, and flusilazole. The recoveries of five water samples were between 69.4% and 106.4%, and the RSD were between 1.0% and 6.5%. The development method is more easy, effective, green and environmental-friendly, and has potential for application.
Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Fungicidas Industriales/análisis , Grafito/química , Indoles/química , Polímeros/química , Triazoles/análisis , Adsorción , Fungicidas Industriales/aislamiento & purificación , Límite de Detección , Fenómenos Magnéticos , Silanos/análisis , Extracción en Fase Sólida/métodos , Triazoles/aislamiento & purificaciónRESUMEN
In this work, zeolite imidazolate framework-8 (ZIF-8) functionalized magnetic graphene oxide (Fe3O4@APTES-GO/ZIF-8) was successfully synthesized and used as a novel adsorbent in magnetic solid-phase extraction (MSPE) for the determination of four triazole fungicides in water, honey and fruit juices. The main parameters such as extraction time, amount of adsorbent, the pH value of the sample, ionic strength, and desorption solvent which could affect the experiment results were optimization. Under the optimum condition, the obtained linearity of this method ranged from 1 to 1000 µg L-1 for all analytes, with correlation coefficients (R2) ≥ 0.9914. Limit of detections (LODs) and limit of qualifications (LOQs) of four triazole fungicides were ranged from 0.014 to 0.109 µg L-1 and from 0.047 to 0.365 µg L-1, respectively. Based on comparison with outcomes from other studies, Fe3O4@APTES-GO/ZIF-8-MSPE could provide high performance and achieve satisfied results for the analysis of trace triazole fungicides in complicated matrices.
RESUMEN
For decades, pesticides have been widely used for controlling pests and protecting crops around the world, and the food safety issues caused by these compounds have raised widespread concern. However, the different enantioselective behaviors and biological activities of chiral pesticide enantiomers are often ignored. In this work, a novel method was put forward to investigate the enantioselective effects and potential risks of two paclobutrazol enantiomers during cucumber pickling process. The degradation kinetics indicated that when paclobutrazol reside in cucumber and was introduced into the pickling process, the half-time of paclobutrazol isomers were significantly different (9.24 d and 16.6 d), and the conversion phenomenon between the two enantiomers could also be observed. In addition, results from 16S rRNA and ITS sequencing shown that (2R, 3R)-paclobutrazol and (2S, 3S)-paclobutrazol have an obviously enantiomeric effects on microbial community of pickling system and the degradation of paclobutrazol was probably attributed to the presence of Pseudomonas and Serratia. Finally, the microorganisms functions were found to be disrupted under the exposure of (2R, 3R)-paclobutrazol and metabolic function of microorganisms to xenobiotic was inhibited, which might cause potential risks to the quality of preserved foods. In summary, we have devised a method and provided a novel insight into the potential risks of chiral pesticide residues on food safety and human health.
Asunto(s)
Cucumis sativus , Alimentos Fermentados , Manipulación de Alimentos/métodos , Residuos de Plaguicidas/toxicidad , Triazoles/toxicidad , Cromatografía Líquida de Alta Presión , Reproducibilidad de los Resultados , Riesgo , Estereoisomerismo , Triazoles/químicaRESUMEN
Background and Objective: Vascular dementia (VaD) and Alzheimer's disease (AD) could be characterized by the same syndrome of dementia. This study aims to assess whether multi-parameter features derived from structural MRI can serve as the informative biomarker for differential diagnosis between VaD and AD using machine learning. Methods: A total of 93 patients imaged with brain MRI including 58 AD and 35 VaD confirmed by two chief physicians were recruited in this study from June 2013 to July 2019. Automated brain tissue segmentation was performed by the AccuBrain tool to extract multi-parameter volumetric measurements from different brain regions. Firstly, a total of 62 structural MRI biomarkers were addressed to select significantly different features between VaD and AD for dimensionality reduction. Then, the least absolute shrinkage and selection operator (LASSO) was further used to construct a feature set that is fed into a support vector machine (SVM) classifier. To ensure the unbiased evaluation of model performance, a comparative study of classification models was implemented by using different machine learning algorithms in order to determine which performs best in the application of differential diagnosis between VaD and AD. The diagnostic performance of the classification models was evaluated by the quantitative metrics derived from the receiver operating characteristic curve (ROC). Results: The experimental results demonstrate that the SVM with RBF achieved an encouraging performance with sensitivity (SEN), specificity (SPE), and accuracy (ACC) values of 82.65%, 87.17%, and 84.35%, respectively (AUC = 0.861, 95% CI = 0.820-0.902), for the differential diagnosis between VaD and AD. Conclusions: The proposed computer-aided diagnosis method highlights the potential of combining structural MRI and machine learning to support clinical decision making in distinction of VaD vs. AD.
RESUMEN
A novel magnetic solid-phase extraction (MSPE) technique coupled with ultra performance liquid chromatography (UPLC) has been developed for the determination of four sulfonylurea herbicides (sulfosulfuron, bensulfuron-methyl, pyrazosulfuron-ethyl and halosulfuron-methyl) in aqueous samples. The key point of this method was the application of a novel magnetic nanomaterial (Fe3O4 @ PDA-DES). The functional groups, morphology, and magnetic properties of this magnetic nanomaterial were investigated through fourier transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and X-ray diffraction (XRD) respectively. The main factors which could affect the experiment results were optimized. Under the optimum conditions, the linearity of this method ranged from 5.0-200⯵gâ¯L-1 for all analytes, with correlation coefficients (r) ≥0.9901. The enrichment factors were between 495 and 630, and the relative standard deviations (RSDs) were less than 3.6%. The limits of detections (LODs) varied from 0.0098 to 0.0110⯵gâ¯L-1. In the final experiment, the developed method has been successfully applied to the determination of sulfonylurea herbicides in environment and drinking water samples, and the obtained recoveries were between 61.3% and 108.6%.