Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Biol Chem ; 299(12): 105428, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926288

RESUMEN

Sufficient activation of interferon signaling is critical for the host to fight against invading viruses, in which post-translational modifications have been demonstrated to play a pivotal role. Here, we demonstrate that the human KRAB-zinc finger protein ZNF268a is essential for virus-induced interferon signaling. We find that cytoplasmic ZNF268a is constantly degraded by lysosome and thus remains low expressed in resting cell cytoplasm. Upon viral infection, TBK1 interacts with cytosolic ZNF268a to catalyze the phosphorylation of Serine 178 of ZNF268a, which prevents the degradation of ZNF268a, resulting in the stabilization and accumulation of ZNF268a in the cytoplasm. Furthermore, we provide evidence that stabilized ZNF268a recruits the lysine methyltransferase SETD4 to TBK1 to induce the mono-methylation of TBK1 on lysine 607, which is critical for the assembly of the TBK1 signaling complex. Notably, ZNF268 S178 is conserved among higher primates but absent in rodents. Meanwhile, rodent TBK1 607th aa happens to be replaced by arginine, possibly indicating a species-specific role of ZNF268a in regulating TBK1 during evolution. These findings reveal novel functions of ZNF268a and SETD4 in regulating antiviral interferon signaling.


Asunto(s)
Interferón Tipo I , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Interferones/metabolismo , Lisina/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Línea Celular , Proteínas Represoras/metabolismo , Metiltransferasas/metabolismo
2.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003298

RESUMEN

A viral infection activates the transcription factors IRF3 and NF-κB, which synergistically induces type I interferons (IFNs). Here, we identify the E3 ubiquitin ligase RNF138 as an important negative regulator of virus-triggered IRF3 activation and IFN-ß induction. The overexpression of RNF138 inhibited the virus-induced activation of IRF3 and the transcription of the IFNB1 gene, whereas the knockout of RNF138 promoted the virus-induced activation of IRF3 and transcription of the IFNB1 gene. We further found that RNF138 promotes the ubiquitination of PTEN and subsequently inhibits PTEN interactions with IRF3, which is essential for the PTEN-mediated nuclear translocation of IRF3, thereby inhibiting IRF3 import into the nucleus. Our findings suggest that RNF138 negatively regulates virus-triggered signaling by inhibiting the interaction of PTEN with IRF3, and these data provide new insights into the molecular mechanisms of cellular antiviral responses.


Asunto(s)
Inmunidad Innata , Interferón beta , Interferón beta/metabolismo , Transducción de Señal , FN-kappa B/metabolismo , Antivirales/farmacología , Factor 3 Regulador del Interferón/metabolismo
3.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216324

RESUMEN

Hepatitis B virus (HBV) infection remains a major global health problem and the primary cause of cirrhosis and hepatocellular carcinoma (HCC). HBV intrusion into host cells is prompted by virus-receptor interactions in clathrin-mediated endocytosis. Here, we report a comprehensive view of the cellular endocytosis-associated transcriptome, proteome and ubiquitylome upon HBV infection. In this study, we quantified 273 genes in the transcriptome and 190 endocytosis-associated proteins in the proteome by performing multi-omics analysis. We further identified 221 Lys sites in 77 endocytosis-associated ubiquitinated proteins. A weak negative correlation was observed among endocytosis-associated transcriptome, proteome and ubiquitylome. We found 33 common differentially expressed genes (DEGs), differentially expressed proteins (DEPs), and Kub-sites. Notably, we reported the HBV-induced ubiquitination change of secretory carrier membrane protein (SCAMP1) for the first time, differentially expressed across all three omics data sets. Overexpression of SCAMP1 efficiently inhibited HBV RNAs/pgRNA and secreted viral proteins, whereas knockdown of SCAMP1 significantly increased viral production. Mechanistically, the EnhI/XP, SP1, and SP2 promoters were inhibited by SCAMP1, which accounts for HBV X and S mRNA inhibition. Overall, our study unveils the previously unknown role of SCAMP1 in viral replication and HBV pathogenesis and provides cumulative and novel information for a better understanding of endocytosis in response to HBV infection.


Asunto(s)
Endocitosis/genética , Hepatitis B/genética , Proteínas de Transporte Vesicular/genética , Replicación Viral/genética , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Células Hep G2 , Virus de la Hepatitis B/patogenicidad , Hepatitis B Crónica/genética , Humanos , Neoplasias Hepáticas/genética , Regiones Promotoras Genéticas/genética , Transactivadores/genética , Proteínas Reguladoras y Accesorias Virales/genética
4.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34884671

RESUMEN

Extracellular vesicles (EVs) released by tumor cells play important roles on the remodeling of the tumor-stromal environment and on promoting tumor metastasis. Our earlier studies revealed that miR-122-5p, a type of small non-coding RNA, was dysregulated in non-small cell lung cancer (NSCLC) cell-derived EVs. In this study, we found that miR-122-5p was selectively sorted and secreted into lung cancer EVs through binding to RNA-binding protein hnRNPA2B1. In addition, we found that hnRNPA2B1 interacted with miR-122-5p through the EXO-motif. The delivering of lung cancer EVs-miR-122-5p promoted the migration of liver cells, which may play roles in establishing a pre-metastatic micro-environment and hepatic metastasis of lung cancer. Importantly, our findings revealed the molecular mechanism that RNA-binding protein controls the selective sorting of tumor-derived EV miR-122-5p, which potentially promotes lung cancer progression.


Asunto(s)
Adenocarcinoma/metabolismo , Vesículas Extracelulares/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , Células A549 , Adenocarcinoma/diagnóstico , Adenocarcinoma/mortalidad , Progresión de la Enfermedad , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidad , Pronóstico
5.
Hepatology ; 69(3): 974-992, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30180281

RESUMEN

Hepatitis B virus (HBV) is a major risk factor for the development and progression of hepatocellular carcinoma. It has been reported that viral infection can interfere with cellular microRNA (miRNA) expression and participate in the pathogenesis of oncogenicity. Here, we report that decreasing levels of the expression of the miRNA miR-192-3p is associated with rising levels of HBV DNA in the serum of HBV patients. We revealed that HBV infection repressed the expression of miR-192-3p through hepatitis B x protein interaction with c-myc. We further showed that miR-192-3p was repressed by HBV transfection in vitro and in a mouse model, leading to cellular autophagy. Using an miRNA target prediction database miRBase, we identified X-linked inhibitor of apoptosis protein (XIAP) as a target gene of miR-192-3p and demonstrated that miR-192-3p directly targeted the XIAP 3'-untranslated region of XIAP messenger RNA. Importantly, we discovered that HBV promoted autophagy through miR-192-3p-XIAP axis and that this process was important for HBV replication in vitro and in vivo. We demonstrated that miR-192-3p functioned through the nuclear factor kappa B signaling pathway to inhibit autophagy, thereby reducing HBV replication. Conclusions: Our findings indicate that miR-192-3p is a regulator of HBV infection and may play a potential role in hepatocellular carcinoma. It may also serve as a biomarker or therapeutic target for HBV patients.


Asunto(s)
Autofagia/fisiología , Virus de la Hepatitis B/fisiología , Proteínas Inhibidoras de la Apoptosis/fisiología , MicroARNs/fisiología , FN-kappa B/fisiología , Transducción de Señal , Replicación Viral , Animales , Células Cultivadas , Ratones
6.
Am J Physiol Cell Physiol ; 316(1): C111-C120, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462536

RESUMEN

Cytosolic free Ca2+ concentration is a key factor in pulmonary vasoconstriction and vascular remodeling of pulmonary artery smooth muscle cells (PASMCs). These processes contribute to pulmonary arterial hypertension and are influenced by expression of calcium-sensing receptor (CaSR). Although regulation of CaSR expression is precisely controlled, the contribution of microRNAs (miR) is incompletely understood. Here, we demonstrate that miR-429, miR-424-5p, miR-200b-3p, and miR-200c-3p regulate CaSR by targeting specific 3'-untranslated region, suggesting that these miRNAs function as CaSR inhibitors in PASMCs. Moreover, miR-429 and miR-424-5p inhibit proliferation of PASMCs by downregulating CaSR, resulting in reduced Ca2+ influx under both normoxia and hypoxia. These findings indicate miR-429 and miR-424-5p target CaSR and may function as Ca2+ influx suppressors in pulmonary arterial hypertension-associated diseases.


Asunto(s)
Calcio/metabolismo , MicroARNs/farmacología , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Receptores Sensibles al Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Células HEK293 , Humanos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Receptores Sensibles al Calcio/antagonistas & inhibidores
7.
Cancer Sci ; 110(5): 1633-1643, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30891870

RESUMEN

Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis. Hepatitis B virus (HBV) is one of the leading causes of HCC, but the precise mechanisms by which this infection promotes cancer development are not fully understood. Recently, miR-340-5p, a microRNA (miRNA) that has been identified as a cancer suppressor gene, was found to inhibit the migration and invasion of liver cancer cells. However, the effect of miR-340-5p on cell proliferation and apoptosis in HBV-associated HCC remains unknown. In our study, we show that miR-340-5p plays an important role during HBV infection and hepatocellular carcinoma development. Specifically, this miRNA directly binds to the mRNA encoding activating transcription factor 7 (ATF7), a protein that both promotes cell proliferation and suppresses apoptosis through its interaction with heat shock protein A member 1B (HSPA1B). We further found that miR-340-5p is downregulated by HBV, which enhances ATF7 expression, leading to enhanced cell proliferation and inhibition of apoptosis. Notably, ATF7 is upregulated in HCC tissue, suggesting that HBV may target miR-340-5p in vivo to promote ATF7/HSPA1B-mediated proliferation and apoptosis and regulate liver cancer progression. This work helps to elucidate the complex interactions between HBV and host miRNAs and further suggests that miR-340-5p may represent a promising candidate for the development of improved therapeutic strategies for HCC.


Asunto(s)
Factores de Transcripción Activadores/genética , Carcinoma Hepatocelular/virología , Proteínas HSP70 de Choque Térmico/genética , Hepatitis B/genética , Neoplasias Hepáticas/virología , MicroARNs/genética , Factores de Transcripción Activadores/metabolismo , Apoptosis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Células Hep G2 , Hepatitis B/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
8.
J Biol Chem ; 290(3): 1818-28, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25451924

RESUMEN

MicroRNAs have been extensively studied as regulators of hematopoiesis and leukemogenesis. We identified miR-638 as a novel regulator in myeloid differentiation and proliferation of leukemic cells. We found that miR-638 was developmentally up-regulated in cells of myeloid but not lymphoid lineage. Furthermore, significant miR-638 down-regulation was observed in primary acute myeloid leukemia (AML) blasts, whereas miR-638 expression was dramatically up-regulated in primary AML blasts and leukemic cell lines undergoing forced myeloid differentiation. These observations suggest that miR-638 might play a role in myeloid differentiation, and its dysregulation may contribute to leukemogenesis. Indeed, ectopic expression of miR-638 promoted phorbol 12-myristate 13-acetate- or all-trans-retinoic acid-induced differentiation of leukemic cell lines and primary AML blasts, whereas miR-638 inhibition caused an opposite phenotype. Consistently, miR-638 overexpression induced G1 cell cycle arrest and reduced colony formation in soft agar. Cyclin-dependent kinase 2 (CDK2) was found to be a target gene of miR-638. CDK2 inhibition phenotypically mimicked the overexpression of miR-638. Moreover, forced expression of CDK2 restored the proliferation and the colony-forming ability inhibited by miR-638. Our data suggest that miR-638 regulates proliferation and myeloid differentiation by targeting CDK2 and may serve as a novel target for leukemia therapy or marker for AML diagnosis and prognosis.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/metabolismo , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/metabolismo , MicroARNs/metabolismo , Secuencia de Bases , Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Quinasa 2 Dependiente de la Ciclina/genética , Células HEK293 , Células HL-60 , Hematopoyesis , Humanos , MicroARNs/genética , Datos de Secuencia Molecular , Oligonucleótidos/genética , Fenotipo , Homología de Secuencia de Ácido Nucleico , Acetato de Tetradecanoilforbol , Regulación hacia Arriba
9.
BMC Genomics ; 17: 335, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27146783

RESUMEN

BACKGROUND: Dysregulation of the common stress responsive transcription factor ATF3 has been causally linked to many important human diseases such as cancer, atherosclerosis, infections, and hypospadias. Although it is believed that the ATF3 transcription activity is central to its cellular functions, how ATF3 regulates gene expression remains largely unknown. Here, we employed ATF3 wild-type and knockout isogenic cell lines to carry out the first comprehensive analysis of global ATF3-binding profiles in the human genome under basal and stressed (DNA damage) conditions. RESULTS: Although expressed at a low basal level, ATF3 was found to bind a large number of genomic sites that are often associated with genes involved in cellular stress responses. Interestingly, ATF3 appears to bind a large portion of genomic sites distal to transcription start sites and enriched with p300 and H3K27ac. Global gene expression profiling analysis indicates that genes proximal to these genomic sites were often regulated by ATF3. While DNA damage elicited by camptothecin dramatically altered the ATF3 binding profile, most of the genes regulated by ATF3 upon DNA damage were pre-bound by ATF3 before the stress. Moreover, we demonstrated that ATF3 was co-localized with the major stress responder p53 at genomic sites, thereby collaborating with p53 to regulate p53 target gene expression upon DNA damage. CONCLUSIONS: These results suggest that ATF3 likely bookmarks genomic sites and interacts with other transcription regulators to control gene expression.


Asunto(s)
Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , ADN/metabolismo , Histonas/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Factor de Transcripción Activador 3/química , Sitios de Unión/efectos de los fármacos , Camptotecina/farmacología , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Células HCT116 , Células HEK293 , Humanos , Proteína p53 Supresora de Tumor/metabolismo
10.
Int J Mol Sci ; 17(12)2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27973455

RESUMEN

As a result of various stresses, lesions caused by DNA-damaging agents occur constantly in each cell of the human body. Generally, DNA damage is recognized and repaired by the DNA damage response (DDR) machinery, and the cells survive. When repair fails, the genomic integrity of the cell is disrupted-a hallmark of cancer. In addition, the DDR plays a dual role in cancer development and therapy. Cancer radiotherapy and chemotherapy are designed to eliminate cancer cells by inducing DNA damage, which in turn can promote tumorigenesis. Over the past two decades, an increasing number of microRNAs (miRNAs), small noncoding RNAs, have been identified as participating in the processes regulating tumorigenesis and responses to cancer treatment with radiation therapy or genotoxic chemotherapies, by modulating the DDR. The purpose of this review is to summarize the recent findings on how miRNAs regulate the DDR and discuss the therapeutic functions of miRNAs in cancer in the context of DDR regulation.


Asunto(s)
Daño del ADN/genética , MicroARNs/metabolismo , Neoplasias/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/genética , Neoplasias/tratamiento farmacológico
11.
FASEB J ; 27(1): 163-73, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23012322

RESUMEN

The genomic amplification of chromosome 1q long arm, the chromosomal region containing C1orf61, is a common event in human cancers. However, the expression pattern of chromosome 1 open reading frame 61 (C1orf61) in hepatocellular carcinoma (HCC) and its effects on HCC progression remain unclear. We have previously reported that C1orf61 is highly up-regulated during human embryogenesis. In this study, we report that C1orf61 expression is associated with the progression of liver disease. We found that C1orf61 is up-regulated in hepatic cirrhosis tissues and is further up-regulated in primary HCC tumors. Moreover, hepatitis B virus (HBV)-positive patients exhibited significantly higher levels of C1orf61 expression than HBV-negative patients. The evaluation of highly malignant HCC cell lines revealed high protein expression levels of C1orf61. Furthermore, the C1orf61 protein was found to be predominantly distributed within the cytoplasm. The ectopic expression of C1orf61 in the nonmalignant L02 cell line promoted cellular proliferation and colony formation in vitro, as well as cell cycle progression via the regulation of the expression of specific cell cycle-related proteins. In addition, the overexpression of C1orf61 in L02 cells facilitated cellular invasion and metastasis. The down-regulation of epithelial markers (E-cadherin and occludin) and the up-regulation of mesenchymal markers (N-cadherin, vimentin, and snail) suggested that the overexpression of C1orf61 induced the epithelial-mesenchymal transition (EMT) that is linked to metastasis. Taken together, our findings demonstrate, for the first time, the roles of C1orf61 in HCC tumorigenesis and metastasis.


Asunto(s)
Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica , Neoplasias Hepáticas/patología , Metástasis de la Neoplasia , Secuencia de Bases , Western Blotting , Carcinoma Hepatocelular/genética , Línea Celular , Línea Celular Tumoral , Cartilla de ADN , Femenino , Hepatitis B/genética , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/genética , Masculino , Sistemas de Lectura Abierta , Análisis de Matrices Tisulares
12.
Cell Mol Life Sci ; 70(20): 3947-58, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23665872

RESUMEN

Previously, we found that two isoforms of the ZNF268 gene (ZNF268a and ZNF268b2, with and without the KRAB domain, respectively) might play distinct roles in normal epithelia and in cervical cancer. Here we further investigated that KRAB domain defined the function disparity in part by reinforcing nuclear localization of ZNF268a. We found that the A-box of KRAB alone retained major specific nuclear localization activity. In contrast, the B-box alone did not have nuclear localization activity but enhanced it significantly. Consistent with the critical function of the A-box, each mutation of six conserved residues (V9, V11, F13, E16, E17 and W18) in the A-box dramatically impaired nuclear localization activity. Furthermore, the unique nuclear localization activity of KRAB was verified in seven additional KRAB-containing zinc finger proteins (KRAB-ZFPs), suggesting that it is a universal feature of KRAB-ZFPs. Finally, KRAB exerted its unique nuclear localization activity by interacting with the RBCC domain of its corepressor KAP1. Our results have revealed a novel mechanism by which the KRAB domain reinforces nuclear localization of KRAB-ZFPs by interacting with KAP1. Our study also suggests that loss of the KRAB domain in KRAB-ZFPs due to aberrant alternative splicing might contribute to carcinogenesis.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Represoras/metabolismo , Transporte Activo de Núcleo Celular , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Células COS , Núcleo Celular/genética , Chlorocebus aethiops , Secuencia Conservada , Elementos de Facilitación Genéticos , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Mutación , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteínas Represoras/genética , Transcripción Genética , Proteína 28 que Contiene Motivos Tripartito
13.
J Biol Chem ; 287(51): 42856-66, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23091055

RESUMEN

Cervical cancer is one of the most common tumors affecting women's health worldwide. Although human papillomavirus can be detected in nearly all cases, the mechanism of cervical carcinogenesis remains to be further addressed. Here, we demonstrated that ZNF268, a Krüppel-associated box-containing zinc finger protein, might contribute to the development of cervical cancer. We found that ZNF268b2, an isoform of ZNF268, was overexpressed in human squamous cervical cancer specimens. Knockdown of ZNF268 in cervical cancer cells caused cell cycle arrest at the G(0)/G(1) phase, reduced colony formation, and increased sensitivity to TNFα-induced apoptosis. In addition, HeLa cell growth in xenograft nude mice was suppressed by ZNF268 knockdown, with increased apoptosis. Furthermore, ZNF268b2 was shown to increase NF-κB signaling in vitro and in vivo. Reconstitution of NF-κB activity restored proliferation in ZNF268 knockdown HeLa cells. Of note, we observed a high frequency of NF-κB activation in ZNF268-overexpressing cervical cancer tissues, suggesting a pathological coincidence of ZNF268b2 overexpression and NF-κB activation. Taken together, our results reveal a novel role of ZNF268b2 that contributes to cervical carcinogenesis in part through enhancing NF-κB signaling.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , FN-kappa B/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Cicloheximida/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Femenino , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Proteínas I-kappa B/metabolismo , Inmunohistoquímica , Ratones , Ratones Desnudos , Inhibidor NF-kappaB alfa , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
14.
BMC Genomics ; 14: 568, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23961710

RESUMEN

BACKGROUND: Mouse has served as an excellent model for studying human development and diseases due to its similarity to human. Advances in transgenic and knockout studies in mouse have dramatically strengthened the use of this model and significantly improved our understanding of gene function during development in the past few decades. More recently, global gene expression analyses have revealed novel features in early embryogenesis up to gastrulation stages and have indeed provided molecular evidence supporting the conservation in early development in human and mouse. On the other hand, little information is known about the gene regulatory networks governing the subsequent organogenesis. Importantly, mouse and human development diverges during organogenesis. For instance, the mouse embryo is born around the end of organogenesis while in human the subsequent fetal period of ongoing growth and maturation of most organs spans more than 2/3 of human embryogenesis. While two recent studies reported the gene expression profiles during human organogenesis, no global gene expression analysis had been done for mouse organogenesis. RESULTS: Here we report a detailed analysis of the global gene expression profiles from egg to the end of organogenesis in mouse. Our studies have revealed distinct temporal regulation patterns for genes belonging to different functional (Gene Ontology or GO) categories that support their roles during organogenesis. More importantly, comparative analyses identify both conserved and divergent gene regulation programs in mouse and human organogenesis, with the latter likely responsible for the developmental divergence between the two species, and further suggest a novel developmental strategy during vertebrate evolution. CONCLUSIONS: We have reported here the first genome-wide gene expression analysis of the entire mouse embryogenesis and compared the transcriptome atlas during mouse and human embryogenesis. Given our earlier observation that genes function in a given process tends to be developmentally co-regulated during organogenesis, our microarray data here should help to identify genes associated with mouse development and/or infer the developmental functions of unknown genes. In addition, our study might be useful for invesgtigating the molecular basis of vertebrate evolution.


Asunto(s)
Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Animales , Análisis por Conglomerados , Femenino , Redes Reguladoras de Genes , Variación Genética , Humanos , Masculino , Ratones , Anotación de Secuencia Molecular , Organogénesis/genética , Transcriptoma
15.
Adv Mater ; 35(41): e2303660, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37417769

RESUMEN

Glioblastoma multiforme (GBM) treatment is hindered by complex pathologies and the need to cross the blood-brain barrier (BBB) during drug delivery. Although exosomes have great potential for GBM treatment, these alone cannot fully meet the therapeutic requirements, owing to their limitations in targeting and delivery. Herein, engineered artificial vesicles (EAVs), ANG-TRP-PK1@EAVs, which are constructed using a liposome extruder from HEK293T cells expressing ANG-TRP-PK1 peptides, is developed. ANG-TRP-PK1 is a fusion peptide of Angiopep-2 fused to the N-terminus of TRP-PK1, to present Angiopep-2 on the EAVs. ANG-TRP-PK1@EAVs have similar characteristics to the secreted exosomes, but a much higher yield. ANG-TRP-PK1@EAVs have efficient BBB-penetration and GBM-targeting abilities in a mock BBB model in in vitro and orthotopic GBM mouse models in vivo. Doxorubicin loading EAVs (ANG-TRP-PK1@DOX) do not alter the characteristics of the EAVs, which can cross the BBB, reach the GBM, and kill tumor cells in orthotopic GBM mouse models. These engineered drug-loaded artificial vesicles show better therapeutic effects on GBM than temozolomide in mice, with very few side effects. In conclusion, EAVs can be inserted into different targeting ligands and packed into different drugs, and they may serve as unique and efficient nanoplatforms for drug delivery and tumor promise therapy.

16.
Cell Mol Gastroenterol Hepatol ; 15(1): 179-195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36096451

RESUMEN

Chronic hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma. However, the function and mechanism of the effect of HBV on host protein ubiquitination remain largely unknown. We aimed at characterizing whether and how HBV promotes self-replication by affecting host protein ubiquitination. In this study, we identified UBXN7, a novel inhibitor for nuclear factor kappa B (NF-κB) signaling, was degraded via interaction with HBV X protein (HBx) to activate NF-κB signaling and autophagy, thereby affecting HBV replication. The expression of UBXN7 was analyzed by Western blot and quantitative reverse transcription polymerase chain reaction in HBV-transfected hepatoma cells and HBV-infected primary human hepatocytes (PHHs). The effects of UBXN7 on HBV replication were analyzed by using in vitro and in vivo assays, including stable isotope labeling by amino acids in cell culture (SILAC) analysis. Changes in HBV replication and the associated molecular mechanisms were analyzed in hepatoma cell lines. SILAC analyses showed that the ubiquitination of UBXN7 was significantly increased in HepG2.2.15 cells compared with control cells. After HBV infection, HBx protein interacted with UBXN7 to promote K48-linked ubiquitination of UBXN7 at K99, leading to UBXN7 degradation. On the other hand, UBXN7 interacted with the ULK domain of IκB kinase ß through its ubiquitin-associating domain to facilitate its degradation. This in turn reduced NF-κB signaling, leading to reduced autophagy and consequently decreased HBV replication.


Asunto(s)
Virus de la Hepatitis B , Transactivadores , Proteínas Reguladoras y Accesorias Virales , Replicación Viral , Humanos , Virus de la Hepatitis B/fisiología , Hepatitis B Crónica , FN-kappa B/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
17.
J Exp Clin Cancer Res ; 41(1): 136, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410432

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) are emerging mediators of intercellular communication that have been shown to play important roles in tumor progression. YRNA fragments, a type of small non-coding RNA, are dysregulated in non-small cell lung cancer (NSCLC) cell-derived EVs, suggesting that they may be an effective biomarker for cancer diagnosis and treatment strategies. METHODS: Differentially expressed YRNA hY4 fragments (hY4F) in EVs from NSCLC cells and normal lung fibroblasts were isolated by differential ultra-centrifugation. RNA-binding proteins that interacted with hY4F were identified by screening with an RNA pulldown assay and mass spectrometry. The molecular mechanism of hY4F and the RNA-binding protein Y box binding protein 1 (YBX1) was demonstrated by qRT-PCR, western blot, RNA pulldown, and rescue experiments. Transcriptome sequencing, qRT-PCR validation, bioinformatics analysis and NF-κB pathway inhibitor assays elucidate the mechanism of YBX1 and hY4F inhibiting lung cancer. A peptide pulldown assay was performed to screen and identify a potential methyltransferase for YBX1. The roles of hY4F, YBX1, and SET domain containing 3 in biological functions, such as proliferation, migration, invasion, and apoptosis, in lung cancer cells were also examined by EdU incorporation assay, Transwell assay, flow cytometry, and other methods. Lastly, a mouse xenograft assay was used to assess the clinical relevance of YBX1 and hY4F in vivo. RESULTS: Our data demonstrate that hY4 RNA fragments were upregulated in lung cancer- derived EVs, hY4F inhibits tumor progression through downregulating MAPK/NF-κB signaling, and then the selective sorting and secretion of hY4F into lung cancer EVs is regulated by the RNA-binding protein YBX1. Furthermore, we identified lysine K264 within the YBX1 C-terminal domain as the necessary site for its interaction with hY4Fs. K264 is modified by methylation, which affects its binding to hY4F and subsequent selective sorting into EVs in lung cancer cells. CONCLUSION: Our findings demonstrate that hY4F acts as a tumor suppressor and is selectively sorted into lung cancer cell-derived EVs by interacting with methylated YBX1, which in turn promotes lung cancer progression. hY4F is a promising circulating biomarker for non-small cell lung cancer diagnosis and prognosis and an exceptional candidate for further therapeutic exploration.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroARNs , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Vesículas Extracelulares/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Ratones , MicroARNs/genética , FN-kappa B/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
18.
Mol Ther Nucleic Acids ; 29: 47-63, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35795482

RESUMEN

Hepatitis B virus (HBV) is a major risk factor for the development and progression of hepatocellular carcinoma (HCC). It has been reported that viral infection can interfere with the expression of cellular microRNA (miRNA) to affect oncogenesis. In this study, we showed that miR-520c-3p was upregulated in liver tumor specimens, and we revealed that HBV infection enhanced the expression of miR-520c-3p through the interaction of viral protein HBV X protein (HBx) with transcription factor CREB1. We further showed that miR-520c-3p induced by HBV transfection/infection caused epithelial-mesenchymal transition (EMT). Using the miRNA target prediction database miRBase and luciferase reporter assays, we identified PTEN as a novel target gene of miR-520c-3p and miR-520c-3p directly targeted PTEN's 3'-untranslated region. Moreover, we discovered that HBV promoted EMT via the miR-520c-3p-PTEN to activate AKT-NFκB signaling pathway, leading to increased HCC migration and invasion. Importantly, miR-520c-3p antagomir significantly represses invasiveness in HBx-induced hepatocellular xenograft models. Our findings indicate that miR-520c-3p is a novel regulator of HBV and plays an important role in HCC progression. It may serve as a new biomarker and molecular therapeutic target for HBV patients.

19.
FASEB J ; 24(9): 3341-50, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20430792

RESUMEN

Human embryogenesis is believed to involve an integrated set of complex yet coordinated development of different organs and tissues mediated by the changes in the spatiotemporal expression of many genes. Here, we report a genome-wide expression analysis during wk 4-9 of human embryogenesis, a critical period when most organs develop. About half of all human genes are expressed, and 18.6% of the expressed genes were significantly regulated during this important period. We further identified >5000 regulated genes, most of which previously were not known to be associated with animal development. Our study fills an important gap in mammalian developmental studies by identifying functional pathways involved in this critical but previously not studied period. Our study also revealed that the genes involved here are distinct from those during early embryogenesis, which include three groups of maternal genes. Furthermore, we discovered that genes in a given developmental process are regulated coordinately. This led us to develop an easily searchable database of this entire collection of gene expression profiles, allowing for the identification new genes important for a particular developmental process/pathway and deducing the potential function of a novel gene. The validity of the predictions from the database was demonstrated with two examples through spatiotemporal analyses of the two novel genes. Such a database should serve as a highly valuable resource for the molecular analysis of human development and pathogenesis.


Asunto(s)
Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Cell Mol Biol Lett ; 15(4): 530-40, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20585888

RESUMEN

ZNF300 was recently identified as a member of the human KRAB/C(2)H(2) zinc finger protein family. Little is known about the role of ZNF300 in human gene regulation networks. In this study, the DNA-binding property of ZNF300 was further analyzed. We found that the recombinant ZNF300 could bind to the binding site 5'-GCGGGGGCG-3' of Egr1, another member of the KRAB/C(2)H(2) zinc finger protein family. Similarly, recombinant Egr1 also showed a similar binding affinity to the ZNF300 binding site 5'-CTGGGGGCG-3'. Bioinformatics analysis revealed that there is an overlapping ZNF300/Egr1 binding site in the human IL-2Rß promoter region, which was previously known to be recognized by endogenous Egr1. Electrophoretic mobility shift assays showed that endogenous ZNF300 could also bind to this site. A transient transfection assay revealed that both ZNF300 and Egr1 could transactivate the IL-2Rß promoter, and that the activation was abrogated by a mutation of residues in the overlapping ZNF300/Egr1 binding site. Co-expression of ZNF300 and Egr1 led to enhanced IL-2Rß promoter activity. Thus, ZNF300 is likely to be another regulator of the human IL-2Rß promoter.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Regulación de la Expresión Génica , Subunidad beta del Receptor de Interleucina-2/genética , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Línea Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Humanos , Subunidad beta del Receptor de Interleucina-2/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/genética , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA