Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 115(6): 1514-1527, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37269223

RESUMEN

The signaling pathways for the phytohormones ethylene and abscisic acid (ABA) have antagonistic effects on seed germination and early seedling establishment. However, the underlying molecular mechanisms remain unclear. In Arabidopsis thaliana, ETHYLENE INSENSITIVE 2 (EIN2) localizes to the endoplasmic reticulum (ER); although its biochemical function is unknown, it connects the ethylene signal with the key transcription factors EIN3 and EIN3-LIKE 1 (EIL1), leading to the transcriptional activation of ethylene-responsive genes. In this study, we uncovered an EIN3/EIL1-independent role for EIN2 in regulating the ABA response. Epistasis analysis demonstrated that this distinct role of EIN2 in the ABA response depends on HOOKLESS 1 (HLS1), the putative histone acetyltransferase acting as a positive regulator of ABA responses. Protein interaction assays supported a direct physical interaction between EIN2 and HLS1 in vitro and in vivo. Loss of EIN2 function resulted in an alteration of HLS1-mediated histone acetylation at the ABA-INSENSITIVE 3 (ABI3) and ABI5 loci, which promotes gene expression and the ABA response during seed germination and early seedling growth, indicating that the EIN2-HLS1 module contributes to ABA responses. Our study thus revealed that EIN2 modulates ABA responses by repressing HLS1 function, independently of the canonical ethylene pathway. These findings shed light on the intricate regulatory mechanisms underling the antagonistic interactions between ethylene and ABA signaling, with significant implications for our understanding of plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Plantones/metabolismo , Germinación , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Semillas/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
2.
Mol Plant ; 13(4): 586-597, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31837469

RESUMEN

Rice tillering, a key architecture trait determining grain yield, is highly regulated by a class of newly identified phytohormones, strigolactones (SLs). However, the whole SL signaling pathway from the receptor to downstream transcription factors to finally inhibit tillering remains unrevealed. In this study, we first found that brassinosteroids (BRs) strongly enhance tillering by promoting bud outgrowth in rice, which is largely different from the function of BRs in Arabidopsis. Genetic and biochemical analyses indicated that both the SL and BR signaling pathways control rice tillering by regulating the stability of D53 and/or the OsBZR1-RLA1-DLT module, a transcriptional complex in the rice BR signaling pathway. We further found that D53 interacts with OsBZR1 to inhibit the expression of FC1, a local inhibitor of tillering, and that this inhibition depends on direct DNA binding by OsBZR1, which recruits D53 to the FC1 promoter in rice buds. Taken together, these findings uncover a mechanism illustrating how SLs and BRs coordinately regulate rice tillering via the early responsive gene FC1.


Asunto(s)
Brasinoesteroides/metabolismo , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Oryza/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grano Comestible/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Fenotipo , Brotes de la Planta/crecimiento & desarrollo , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA