Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 617(7959): 118-124, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100915

RESUMEN

Modern green revolution varieties of wheat (Triticum aestivum L.) confer semi-dwarf and lodging-resistant plant architecture owing to the Reduced height-B1b (Rht-B1b) and Rht-D1b alleles1. However, both Rht-B1b and Rht-D1b are gain-of-function mutant alleles encoding gibberellin signalling repressors that stably repress plant growth and negatively affect nitrogen-use efficiency and grain filling2-5. Therefore, the green revolution varieties of wheat harbouring Rht-B1b or Rht-D1b usually produce smaller grain and require higher nitrogen fertilizer inputs to maintain their grain yields. Here we describe a strategy to design semi-dwarf wheat varieties without the need for Rht-B1b or Rht-D1b alleles. We discovered that absence of Rht-B1 and ZnF-B (encoding a RING-type E3 ligase) through a natural deletion of a haploblock of about 500 kilobases shaped semi-dwarf plants with more compact plant architecture and substantially improved grain yield (up to 15.2%) in field trials. Further genetic analysis confirmed that the deletion of ZnF-B induced the semi-dwarf trait in the absence of the Rht-B1b and Rht-D1b alleles through attenuating brassinosteroid (BR) perception. ZnF acts as a BR signalling activator to facilitate proteasomal destruction of the BR signalling repressor BRI1 kinase inhibitor 1 (TaBKI1), and loss of ZnF stabilizes TaBKI1 to block BR signalling transduction. Our findings not only identified a pivotal BR signalling modulator but also provided a creative strategy to design high-yield semi-dwarf wheat varieties by manipulating the BR signal pathway to sustain wheat production.


Asunto(s)
Biomasa , Brasinoesteroides , Grano Comestible , Transducción de Señal , Triticum , Alelos , Brasinoesteroides/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Eliminación de Gen , Genes de Plantas , Giberelinas/metabolismo , Fenotipo , Triticum/clasificación , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Proteínas de Plantas/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo
2.
Plant Cell ; 36(7): 2607-2628, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38537937

RESUMEN

Cold injury is a major environmental stress affecting the growth and yield of crops. Brassinosteroids (BRs) and salicylic acid (SA) play important roles in plant cold tolerance. However, whether or how BR signaling interacts with the SA signaling pathway in response to cold stress is still unknown. Here, we identified an SA methyltransferase, TaSAMT1 that converts SA to methyl SA (MeSA) and confers freezing tolerance in wheat (Triticum aestivum). TaSAMT1 overexpression greatly enhanced wheat freezing tolerance, with plants accumulating more MeSA and less SA, whereas Tasamt1 knockout lines were sensitive to freezing stress and accumulated less MeSA and more SA. Spraying plants with MeSA conferred freezing tolerance to Tasamt1 mutants, but SA did not. We revealed that BRASSINAZOLE-RESISTANT 1 (TaBZR1) directly binds to the TaSAMT1 promoter and induces its transcription. Moreover, TaBZR1 interacts with the histone acetyltransferase TaHAG1, which potentiates TaSAMT1 expression via increased histone acetylation and modulates the SA pathway during freezing stress. Additionally, overexpression of TaBZR1 or TaHAG1 altered TaSAMT1 expression and improved freezing tolerance. Our results demonstrate a key regulatory node that connects the BR and SA pathways in the plant cold stress response. The regulatory factors or genes identified could be effective targets for the genetic improvement of freezing tolerance in crops.


Asunto(s)
Brasinoesteroides , Congelación , Regulación de la Expresión Génica de las Plantas , Metiltransferasas , Proteínas de Plantas , Ácido Salicílico , Transducción de Señal , Triticum , Triticum/genética , Triticum/fisiología , Triticum/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética
3.
Plant Cell ; 35(6): 1848-1867, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36905284

RESUMEN

The dynamics of gene expression in crop grains has typically been investigated at the transcriptional level. However, this approach neglects translational regulation, a widespread mechanism that rapidly modulates gene expression to increase the plasticity of organisms. Here, we performed ribosome profiling and polysome profiling to obtain a comprehensive translatome data set of developing bread wheat (Triticum aestivum) grains. We further investigated the genome-wide translational dynamics during grain development, revealing that the translation of many functional genes is modulated in a stage-specific manner. The unbalanced translation between subgenomes is pervasive, which increases the expression flexibility of allohexaploid wheat. In addition, we uncovered widespread previously unannotated translation events, including upstream open reading frames (uORFs), downstream open reading frames (dORFs), and open reading frames (ORFs) in long noncoding RNAs, and characterized the temporal expression dynamics of small ORFs. We demonstrated that uORFs act as cis-regulatory elements that can repress or even enhance the translation of mRNAs. Gene translation may be combinatorially modulated by uORFs, dORFs, and microRNAs. In summary, our study presents a translatomic resource that provides a comprehensive and detailed overview of the translational regulation in developing bread wheat grains. This resource will facilitate future crop improvements for optimal yield and quality.


Asunto(s)
MicroARNs , Triticum , Triticum/genética , Pan , MicroARNs/genética , ARN Mensajero , Polirribosomas , Sistemas de Lectura Abierta/genética , Grano Comestible/genética , Biosíntesis de Proteínas/genética
4.
Plant Cell ; 35(10): 3889-3910, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37399070

RESUMEN

Dissecting genetic components in crop plants associated with heat stress (HS) sensing and adaptation will facilitate the design of modern crop varieties with improved thermotolerance. However, the molecular mechanisms underlying the ON/OFF switch controlling HS responses (HSRs) in wheat (Triticum aestivum) remain largely unknown. In this study, we focused on the molecular action of TaHsfA1, a class A heat shock transcription factor, in sensing dynamically changing HS signals and regulating HSRs. We show that the TaHsfA1 protein is modified by small ubiquitin-related modifier (SUMO) and that this modification is essential for the full transcriptional activation activity of TaHsfA1 in triggering downstream gene expression. During sustained heat exposure, the SUMOylation of TaHsfA1 is suppressed, which partially reduces TaHsfA1 protein activity, thereby reducing the intensity of downstream HSRs. In addition, we demonstrate that TaHsfA1 interacts with the histone acetyltransferase TaHAG1 in a thermosensitive manner. Together, our findings emphasize the importance of TaHsfA1 in thermotolerance in wheat. In addition, they define a highly dynamic SUMOylation-dependent "ON/OFF" molecular switch that senses temperature signals and contributes to thermotolerance in crops.


Asunto(s)
Sumoilación , Triticum , Triticum/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Respuesta al Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo
5.
Plant Biotechnol J ; 22(1): 200-215, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37752705

RESUMEN

Grain size is one of the important traits in wheat breeding programs aimed at improving yield, and cytokinins, mainly involved in cell division, have a positive impact on grain size. Here, we identified a novel wheat gene TaMADS-GS encoding type I MADS-box transcription factor, which regulates the cytokinins signalling pathway during early stages of grain development to modulate grain size and weight in wheat. TaMADS-GS is exclusively expressed in grains at early stage of seed development and its knockout leads to delayed endosperm cellularization, smaller grain size and lower grain weight. TaMADS-GS protein interacts with the Polycomb Repressive Complex 2 (PRC2) and leads to repression of genes encoding cytokinin oxidase/dehydrogenases (CKXs) stimulating cytokinins inactivation by mediating accumulation of the histone H3 trimethylation at lysine 27 (H3K27me3). Through the screening of a large wheat germplasm collection, an elite allele of the TaMADS-GS exhibits higher ability to repress expression of genes inactivating cytokinins and a positive correlation with grain size and weight, thus representing a novel marker for breeding programs in wheat. Overall, these findings support the relevance of TaMADS-GS as a key regulator of wheat grain size and weight.


Asunto(s)
Endospermo , Factores de Transcripción , Factores de Transcripción/genética , Endospermo/metabolismo , Triticum/metabolismo , Fitomejoramiento , Grano Comestible , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
6.
J Antimicrob Chemother ; 79(10): 2688-2697, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39119898

RESUMEN

OBJECTIVES: Mechanisms of non-typhoidal Salmonella (NTS) resistance to azithromycin have rarely been reported. Here we investigate the epidemiology and genetic features of 10 azithromycin-resistant NTS isolates. METHODS: A total of 457 NTS isolates were collected from a tertiary hospital in Guangzhou. We performed antimicrobial susceptibility tests, conjugation experiments, efflux pump expression tests, whole-genome sequencing and bioinformatics analysis to conduct the study. RESULTS: The results showed that 10 NTS isolates (2.8%) were resistant to azithromycin with minimum inhibitory concentration values ranging from 128 to 512 mg/L and exhibited multidrug resistance. The phylogenetic tree revealed that 5 S. London isolates (AR1-AR5) recognized at different times and departments were closely related [3-74 single-nucleotide polymorphisms (SNPs)] and 2 S. Typhimurium isolates (AR7 and AR8) were clones (<3 SNPs) at 3-month intervals. The azithromycin resistance was conferred by mph(A) gene found on different plasmids, including IncFIB, IncHI2, InFII, IncC and IncI plasmids. Among them, IncFIB, InFII and IncHI2 plasmids carried different IS26-class 1 integron (intI1) arrangement patterns that mediated multidrug resistance transmission. Conjugative IncC plasmid encoded resistance to ciprofloxacin, ceftriaxone and azithromycin. Furthermore, phylogenetic analysis demonstrated that mph(A)-positive plasmids closely related to 10 plasmids in this study were mainly discovered from NTS, Escherichia coli, Klebsiella pneumonia and Enterobacter hormaechei. The genetic environment of mph(A) in 10 NTS isolates was IS26-mph(A)-mrx(A)-mphR(A)-IS6100/IS26 that co-arranged with intI1 harbour multidrug-resistant (MDR) gene cassettes on diverse plasmids. CONCLUSIONS: These findings highlighted that the dissemination of these plasmids carrying mph(A) and various intI1 MDR gene cassettes would seriously restrict the availability of essential antimicrobial agents for treating NTS infections.


Asunto(s)
Antibacterianos , Azitromicina , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Filogenia , Plásmidos , Infecciones por Salmonella , Salmonella , Azitromicina/farmacología , Humanos , Plásmidos/genética , Infecciones por Salmonella/microbiología , Antibacterianos/farmacología , Salmonella/genética , Salmonella/efectos de los fármacos , Salmonella/clasificación , Salmonella/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética , China , Secuenciación Completa del Genoma , Masculino , Polimorfismo de Nucleótido Simple , Femenino , Centros de Atención Terciaria
7.
New Phytol ; 242(6): 2510-2523, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38629267

RESUMEN

Seminal roots play a critical role in water and nutrient absorption, particularly in the early developmental stages of wheat. However, the genes responsible for controlling SRN in wheat remain largely unknown. Genetic mapping and functional analyses identified a candidate gene (TraesCS3D01G137200, TaSRN-3D) encoding a Ser/Thr kinase glycogen synthase kinase 3 (STKc_GSK3) that regulated SRN in wheat. Additionally, experiments involving hormone treatment, nitrate absorption and protein interaction were conducted to explore the regulatory mechanism of TaSRN-3D. Results showed that the TaSRN-3D4332 allele inhibited seminal roots initiation and development, while loss-of-function mutants showed significantly higher seminal root number (SRN). Exogenous application of epi-brassinolide could increase the SRN in a HS2-allelic background. Furthermore, chlorate sensitivity and 15N uptake assays revealed that a higher number of seminal roots promoted nitrate accumulation. TaBSR1 (BIN2-related SRN Regulator 1, orthologous to OsGRF4/GL2 in rice) acts as an interactor of TaSRN-3D and promotes TaBSR1 degradation to reduce SRN. This study provides valuable insights into understanding the genetic basis and regulatory network of SRN in wheat, highlighting their roles as potential targets for root-based improvement in wheat breeding.


Asunto(s)
Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Raíces de Plantas , Triticum , Alelos , Brasinoesteroides/metabolismo , Mapeo Cromosómico , Genes de Plantas , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Mutación/genética , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Triticum/genética , Triticum/metabolismo
8.
New Phytol ; 242(2): 507-523, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38362849

RESUMEN

Polyploidization is a major event driving plant evolution and domestication. However, how reshaped epigenetic modifications coordinate gene transcription to generate phenotypic variations during wheat polyploidization is currently elusive. Here, we profiled transcriptomes and DNA methylomes of two diploid wheat accessions (SlSl and AA) and their synthetic allotetraploid wheat line (SlSlAA), which displayed elongated root hair and improved root capability for nitrate uptake and assimilation after tetraploidization. Globally decreased DNA methylation levels with a reduced difference between subgenomes were observed in the roots of SlSlAA. DNA methylation changes in first exon showed strong connections with altered transcription during tetraploidization. Homoeolog-specific transcription was associated with biased DNA methylation as shaped by homoeologous sequence variation. The hypomethylated promoters showed significantly enriched binding sites for MYB, which may affect gene transcription in response to root hair growth. Two master regulators in root hair elongation pathway, AlCPC and TuRSL4, exhibited upregulated transcription levels accompanied by hypomethylation in promoter, which may contribute to the elongated root hair. The upregulated nitrate transporter genes, including NPFs and NRTs, also are significantly associated with hypomethylation, indicating an epigenetic-incorporated regulation manner in improving nitrogen use efficiency. Collectively, these results provided new insights into epigenetic changes in response to crop polyploidization and underscored the importance of epigenetic regulation in improving crop traits.


Asunto(s)
Metilación de ADN , Tetraploidía , Metilación de ADN/genética , Triticum/genética , Epigénesis Genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas
9.
Plant Physiol ; 193(1): 578-594, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37249052

RESUMEN

Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing data sets. Our analysis revealed that most NOGs were recently transferred and lineage specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during 2 rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping interspecies and intraspecies genome variation and driving plant genome evolution.


Asunto(s)
Oryza , Poaceae , Poaceae/genética , Triticum/genética , Genoma de Planta/genética , Oryza/genética , Zea mays/genética , Evolución Molecular
10.
Plant Cell ; 33(3): 603-622, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955492

RESUMEN

In wheat (Triticum aestivum L.), breeding efforts have focused intensively on improving grain yield and quality. For quality, the content and composition of seed storage proteins (SSPs) determine the elasticity of wheat dough and flour processing quality. Moreover, starch levels in seeds are associated with yield. However, little is known about the mechanisms that coordinate SSP and starch accumulation in wheat. In this study, we explored the role of the endosperm-specific NAC transcription factor TaNAC019 in coordinating SSP and starch accumulation. TaNAC019 binds to the promoters of TaGlu-1 loci, encoding high molecular weight glutenin (HMW-GS), and of starch metabolism genes. Triple knock-out mutants of all three TaNAC019 homoeologs exhibited reduced transcript levels for all SSP types and genes involved in starch metabolism, leading to lower gluten and starch contents, and in flour processing quality parameters. TaNAC019 directly activated the expression of HMW-GS genes by binding to a specific motif in their promoters and interacting with the TaGlu-1 regulator TaGAMyb. TaNAC019 also indirectly regulated the expression of TaSPA, an ortholog of maize Opaque2 that activates SSP accumulation. Therefore, TaNAC019 regulation of starch- and SSP-related genes has key roles in wheat grain quality. Finally, we identified an elite allele (TaNAC019-BI) associated with flour processing quality, providing a candidate gene for breeding wheat with improved quality.


Asunto(s)
Endospermo/metabolismo , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Factores de Transcripción/metabolismo , Alelos , Endospermo/genética , Glútenes/genética , Glútenes/metabolismo , Proteínas de Plantas/genética , Almidón/genética , Factores de Transcripción/genética , Triticum/genética , Triticum/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-38914854

RESUMEN

Increasing evidence shows that risk preference is associated with schizophrenia. However, the causality and direction of this association are not clear; Therefore, we used Mendelian randomization (MR) to examine the potential bidirectional relationship between risk preference and schizophrenia. Genome-wide association studies (GWAS) summary data on risk preference of 939,908 participants from the UK Biobank and 23andMe were used to identify general risk preference. Data from 320,404 subjects (76,755 cases and 243,649 controls) from The Psychiatric Genomics Consortium were used to identify schizophrenia. The weighted median (WM), the inverse variance weighted (IVW), and the Mendelian randomization-Egger (MR-Egger) methods were used for the MR analysis to estimate the causal effect and detect the directional pleiotropy. The GWAS summary data were respectively from two combined samples, containing 939,908 and 320,404 subjects of European ancestry. Mendelian randomization evidence suggested that risk preference was associated with increased onset of schizophrenia (OR = 2.84, 95CI%: 1.77-4.56, P = 1.58*10 - 5) and that schizophrenia was also associated with raised risk preference (OR = 1.11, 95CI%: 1.07-1.15, P = 7.98*10 - 8). With the use of large-scale GWAS data, robust evidence suggests an interaction between risk preference and schizophrenia. This also indicates that early identification of and intervention for increased risk preference may improve the prognosis of schizophrenia.

12.
Plant Biotechnol J ; 21(6): 1159-1175, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36752567

RESUMEN

Grain size and filling are two key determinants of grain thousand-kernel weight (TKW) and crop yield, therefore they have undergone strong selection since cereal was domesticated. Genetic dissection of the two traits will improve yield potential in crops. A quantitative trait locus significantly associated with wheat grain TKW was detected on chromosome 7AS flanked by a simple sequence repeat marker of Wmc17 in Chinese wheat 262 mini-core collection by genome-wide association study. Combined with the bulked segregant RNA-sequencing (BSR-seq) analysis of an F2 genetic segregation population with extremely different TKW traits, a candidate trehalose-6-phosphate phosphatase gene located at 135.0 Mb (CS V1.0), designated as TaTPP-7A, was identified. This gene was specifically expressed in developing grains and strongly influenced grain filling and size. Overexpression (OE) of TaTPP-7A in wheat enhanced grain TKW and wheat yield greatly. Detailed analysis revealed that OE of TaTPP-7A significantly increased the expression levels of starch synthesis- and senescence-related genes involved in abscisic acid (ABA) and ethylene pathways. Moreover, most of the sucrose metabolism and starch regulation-related genes were potentially regulated by SnRK1. In addition, TaTPP-7A is a crucial domestication- and breeding-targeted gene and it feedback regulates sucrose lysis, flux, and utilization in the grain endosperm mainly through the T6P-SnRK1 pathway and sugar-ABA interaction. Thus, we confirmed the T6P signalling pathway as the central regulatory system for sucrose allocation and source-sink interactions in wheat grains and propose that the trehalose pathway components have great potential to increase yields in cereal crops.


Asunto(s)
Ácido Abscísico , Grano Comestible , Ácido Abscísico/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Triticum/genética , Triticum/metabolismo , Azúcares/metabolismo , Retroalimentación , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Sacarosa/metabolismo , Almidón/metabolismo
13.
New Phytol ; 239(1): 87-101, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36617723

RESUMEN

Gluten is composed of glutenins and gliadins and determines the viscoelastic properties of dough and end-use quality in wheat (Triticum aestivum L.). Gliadins are important for wheat end-use traits, but the contribution of individual gliadin genes is unclear, since gliadins are encoded by a complex, multigenic family, including many pseudogenes. We used CRISPR/Cas9-mediated gene editing and map-based cloning to investigate the contribution of the γ-gliadin genes annotated in the wheat cultivar 'Fielder', showing that Gli-γ1-1D and Gli-γ2-1B account for most of the γ-gliadin accumulation. The impaired activity of only two γ-gliadin genes in knockout mutants improved end-use quality and reduced gluten epitopes associated with celiac disease (CD). Furthermore, we identified an elite haplotype of Gli-γ1-1D linked to higher end-use quality in a wheat germplasm collection and developed a molecular marker for this allele for marker-assisted selection. Our findings provide information and tools for biotechnology-based and classical breeding programs aimed at improving wheat end-use quality.


Asunto(s)
Gliadina , Triticum , Gliadina/genética , Triticum/genética , Alelos , Fitomejoramiento , Glútenes/genética
14.
Plant Physiol ; 188(4): 1950-1965, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35088857

RESUMEN

Accurate germplasm characterization is a vital step for accelerating crop genetic improvement, which remains largely infeasible for crops such as bread wheat (Triticum aestivum L.), which has a complex genome that undergoes frequent introgression and contains many structural variations. Here, we propose a genomic strategy called ggComp, which integrates resequencing data with copy number variations and stratified single-nucleotide polymorphism densities to enable unsupervised identification of pairwise germplasm resource-based Identity-By-Descent (gIBD) blocks. The reliability of ggComp was verified in wheat cultivar Nongda5181 by dissecting parental-descent patterns represented by inherited genomic blocks. With gIBD blocks identified among 212 wheat accessions, we constructed a multi-scale genomic-based germplasm network. At the whole-genome level, the network helps to clarify pedigree relationship, demonstrate genetic flow, and identify key founder lines. At the chromosome level, we were able to trace the utilization of 1RS introgression in modern wheat breeding by hitchhiked segments. At the single block scale, the dissected germplasm-based haplotypes nicely matched with previously identified alleles of "Green Revolution" genes and can guide allele mining and dissect the trajectory of beneficial alleles in wheat breeding. Our work presents a model-based framework for precisely evaluating germplasm resources with genomic data. A database, WheatCompDB (http://wheat.cau.edu.cn/WheatCompDB/), is available for researchers to exploit the identified gIBDs with a multi-scale network.


Asunto(s)
Fitomejoramiento , Triticum , Pan , Variaciones en el Número de Copia de ADN , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados , Triticum/genética
15.
Plant Cell ; 32(4): 923-934, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32060175

RESUMEN

Six subspecies of hexaploid wheat (Triticum aestivum) have been identified, but the origin of Indian dwarf wheat (Triticum sphaerococcum), the only subspecies with round grains, is currently unknown. Here, we isolated the grain-shape gene Tasg-D1 in T sphaerococcum via positional cloning. Tasg-D1 encodes a Ser/Thr protein kinase glycogen synthase kinase3 (STKc_GSK3) that negatively regulates brassinosteroid signaling. Expression of TaSG-D1 and the mutant form Tasg-D1 in Arabidopsis (Arabidopsis thaliana) suggested that a single amino acid substitution in the Thr-283-Arg-284-Glu-285-Glu-286 domain of TaSG-D1 enhances protein stability in response to brassinosteroids, likely leading to formation of round grains in wheat. This gain-of-function mutation has pleiotropic effects on plant architecture and exhibits incomplete dominance. Haplotype analysis of 898 wheat accessions indicated that the origin of T sphaerococcum in ancient India involved at least two independent mutations of TaSG-D1 Our results demonstrate that modest genetic changes in a single gene can induce dramatic phenotypic changes.


Asunto(s)
Sustitución de Aminoácidos/genética , Glucógeno Sintasa Quinasa 3/genética , Semillas/anatomía & histología , Triticum/anatomía & histología , Triticum/genética , Secuencia de Bases , Brasinoesteroides/metabolismo , Clonación Molecular , Haplotipos/genética , Fenotipo , Mutación Puntual/genética , Transducción de Señal , Triticum/crecimiento & desarrollo
16.
Theor Appl Genet ; 136(12): 254, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38006406

RESUMEN

KEY MESSAGE: A point mutation of RPM1 triggers persistent immune response that induces leaf premature senescence in wheat, providing novel information of immune responses and leaf senescence. Leaf premature senescence in wheat (Triticum aestivum L.) is one of the most common factors affecting the plant's development and yield. In this study, we identified a novel wheat mutant, yellow leaf and premature senescence (ylp), which exhibits yellow leaves and premature senescence at the heading and flowering stages. Consistent with the yellow leaves phenotype, ylp had damaged and collapsed chloroplasts. Map-based cloning revealed that the phenotype of ylp was caused by a point mutation from Arg to His at amino acid 790 in a plasma membrane-localized protein resistance to Pseudomonas syringae pv. maculicola 1 (RPM1). The point mutation triggered excessive immune responses and the upregulation of senescence- and autophagy-associated genes. This work provided the information for understanding the molecular regulatory mechanism of leaf senescence, and the results would be important to analyze which mutations of RPM1 could enable plants to obtain immune activation without negative effects on plant growth.


Asunto(s)
Pseudomonas syringae , Triticum , Triticum/genética , Triticum/metabolismo , Pseudomonas syringae/metabolismo , Proteínas de Plantas/metabolismo , Aminoácidos/metabolismo , Hojas de la Planta , Mutación , Regulación de la Expresión Génica de las Plantas
17.
Eur Arch Psychiatry Clin Neurosci ; 273(5): 1073-1083, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35902412

RESUMEN

This study aimed to elucidate the contribution of childhood maltreatment (CM) and the disease of major depressive disorder (MDD) on cognitive function in medication-free patients in a current depressive episode, and to examine the effect of CM on the improvement of cognitive function after treatment with antidepressants. One hundred and fifty-three unmedicated patients with MDD and 142 healthy controls (HCs) underwent clinical interviews. CM assessment was performed using the Childhood Trauma Questionnaire (CTQ), and a battery of comprehensive neurocognitive tests was used to assess the participants' executive function, processing speed, attention, and memory. After 6 months of treatment with antidepressants, the neurocognitive tests were reperformed in patients with MDD and HCs. There was a significant main effect of MDD on all four cognitive domains, while the main effect of CM was only significant on memory. No significant interactive effect was found between MDD and CM on any of the cognitive domains. In the MDD group, higher CTQ total score was predictive of poorer memory performance. After treatment, significant main effects of treatment and MDD were found on all four cognitive domains in remitted patients with MDD. No significant main effect of CM or three-way interaction effect of treatment × MDD × CM was found on any of the cognitive domains. The disease of MDD contributed to impairments in all four cognitive domains. CM independently contributed to memory impairment in patients in a current depressive episode, with higher severity of CM predictive of poorer memory performance.


Asunto(s)
Maltrato a los Niños , Disfunción Cognitiva , Trastorno Depresivo Mayor , Humanos , Niño , Trastorno Depresivo Mayor/complicaciones , Trastorno Depresivo Mayor/tratamiento farmacológico , Cognición , Función Ejecutiva , Antidepresivos/uso terapéutico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/tratamiento farmacológico
18.
Plant Biotechnol J ; 20(5): 920-933, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34978137

RESUMEN

The spikelet number and heading date are two crucial and correlated traits for yield in wheat. Here, a quantitative trait locus (QTL) analysis was conducted in F8 recombinant inbred lines (RILs) derived from crossing two common wheats with different spikelet numbers. A total of 15 stable QTL influencing total spikelet number (TSN) and heading date (HD) were detected. Notably, FT-D1, a well-known flowering time gene in wheat, was located within the finely mapped interval of a major QTL on 7DS (QTsn/Hd.cau-7D). A causal indel of one G in the third exon of FT-D1 was significantly associated with total spikelet number and heading date. Consistently, CRISPR/Cas9 mutant lines with homozygous mutations in FT-D1 displayed an increase in total spikelet number and heading date when compared with wild type. Moreover, one simple and robust marker developed according to the polymorphic site of FT-D1 revealed that this one G indel had been preferentially selected to adapt to different environments. Collectively, these data provide further insights into the genetic basis of spikelet number and heading date, and the diagnostic marker of FT-D1 will be useful for marker-assisted pyramiding in wheat breeding.


Asunto(s)
Fitomejoramiento , Triticum , Exones/genética , Nucleótidos , Sitios de Carácter Cuantitativo/genética , Triticum/genética
19.
New Phytol ; 236(1): 146-164, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35714031

RESUMEN

Along with increasing demands for high yield, elite processing quality and improved nutrient value in wheat, concerns have emerged around the effects of gluten in wheat-based foods on human health. However, knowledge of the mechanisms regulating gluten accumulation remains largely unexplored. Here we report the identification and characterization of a wheat low gluten protein 1 (lgp1) mutant that shows extremely low levels of gliadins and glutenins. The lgp1 mutation in a single γ-gliadin gene causes defective signal peptide cleavage, resulting in the accumulation of an excessive amount of unprocessed γ-gliadin and a reduced level of gluten, which alters the endoplasmic reticulum (ER) structure, forms the autophagosome-like structures, leads to the delivery of seed storage proteins to the extracellular space and causes a reduction in starch biosynthesis. Physiologically, these effects trigger ER stress and cell death. This study unravels a unique mechanism that unprocessed γ-gliadin reduces gluten accumulation associated with ER stress and elevated cell death in wheat. Moreover, the reduced gluten level in the lgp1 mutant makes it a good candidate for specific diets for patients with diabetes or kidney diease.


Asunto(s)
Gliadina , Triticum , Muerte Celular , Estrés del Retículo Endoplásmico , Gliadina/química , Gliadina/genética , Gliadina/metabolismo , Glútenes/química , Glútenes/genética , Humanos , Triticum/metabolismo
20.
New Phytol ; 236(2): 590-607, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35832009

RESUMEN

Plants have evolved a two-branched innate immune system to detect and cope with pathogen attack, which are initiated by cell-surface and intracellular immune receptors leading to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. A core transducer including PAD4-EDS1 node is proposed as the convergence point for a two-tiered immune system in conferring pathogen immunity. However, the transcriptional regulatory mechanisms controlling expression of these key transducers remain largely unknown. Here, we identified histone acetyltransferase TaHAG1 as a positive regulator of powdery mildew resistance in wheat. TaHAG1 regulates expression of key transducer gene TaPAD4 and promotes SA and reactive oxygen species accumulation to accomplish resistance to Bgt infection. Moreover, overexpression and CRISPR-mediated knockout of TaPAD4 validate its role in wheat powdery mildew resistance. Furthermore, TaHAG1 physically interacts with TaPLATZ5, a plant-specific zinc-binding protein. TaPLATZ5 directly binds to promoter of TaPAD4 and together with TaHAG1 to potentiate the expression of TaPAD4 by increasing the levels of H3 acetylation. Our study revealed a key transcription regulatory node in which TaHAG1 acts as an epigenetic modulator and interacts with TaPLATZ5 that confers powdery mildew resistance in wheat through activating a convergence point gene between PTI and ETI, which could be effective for genetic improvement of disease resistance in wheat and other crops.


Asunto(s)
Ascomicetos , Triticum , Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Histona Acetiltransferasas/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA