Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(27): e2308148, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38290809

RESUMEN

Hexagonal boron nitride (hBN) is an emerging 2D material attracting significant attention due to its superior electrical, chemical, and therapeutic properties. However, inhalation toxicity mechanisms of hBN in human lung cells are poorly understood. Here, cellular interaction and effects of hBN nanosheets is investigated in alveolar epithelial cells cultured on porous inserts and exposed under air-liquid interface conditions for 24 h. hBN is taken up by the cells as determined in a label-free manner via RAMAN-confocal microscopy, ICP-MS, TEM, and SEM-EDX. No significant (p > 0.05) effects are observed on cell membrane integrity (LDH release), epithelial barrier integrity (TEER), interleukin-8 cytokine production or reactive oxygen production at tested dose ranges (1, 5, and 10 µg cm-2). However, it is observed that an enhanced accumulation of lipid granules in cells indicating the effect of hBN on lipid metabolism. In addition, it is observed that a significant (p < 0.05) and dose-dependent (5 and 10 µg cm-2) induction of autophagy in cells after exposure to hBN, potentially associated with the downstream processing and breakdown of excess lipid granules to maintain lipid homeostasis. Indeed, lysosomal co-localization of lipid granules supporting this argument is observed. Overall, the results suggest that the continuous presence of excess intracellular lipids may provoke adverse outcomes in the lungs.


Asunto(s)
Células Epiteliales Alveolares , Autofagia , Compuestos de Boro , Humanos , Compuestos de Boro/química , Compuestos de Boro/farmacología , Autofagia/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Nanoestructuras/química , Metabolismo de los Lípidos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
2.
Chemphyschem ; 24(22): e202300572, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37596962

RESUMEN

Giant power conversion efficiency is achieved by using bifunction ZrO2 : Er3+ /Yb3+ assisted co-sensitised dye-sensitized solar cells. The evolution of the crystalline structure and its microstructure are examined by X-ray diffraction, scanning electron microscopy studies. The bi-functional behaviour of ZrO2 : Er3+ /Yb3+ as upconversion, light scattering is confirmed by emission and diffused reflectance studies. The bi-function ZrO2 : Er3+ /Yb3+ (pH=3) assisted photoanode is co-sensitized by use of N719 dye, squaraine SPSQ2 dye and is sandwiched with Platinum based counter electrode. The fabricated DSSC exhibited a giant power conversion efficiency of 12.35 % with VOC of 0.71 V, JSC of 27.06 mA/cm2 , FF of 0.63. The results, which motivated the development of a small DSSC module, gave 6.21 % and is used to drive a tiny electronic motor in indoor and outdoor lighting conditions. Small-area DSSCs connected in series have found that a VOC of 4.52 V is sufficient to power up Internet of Things (IoT) devices.

3.
Luminescence ; 38(5): 568-575, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36929687

RESUMEN

In the current study, α-Bi2 O3 and ß-Bi2 O3 were synthesised using a one-step, novel, solid-solid combustion technique. The reaction rate was increased with the use of microwaves (molecular heating) compared to direct or indirect heating. A strong relationship was observed between the fuel, polymorphic structure, shape and optical properties of the synthesised Bi2 O3 . Photoluminescence studies reveal that two major visible emissions are observed for all samples. The two emissions are distinct with a broad peak in blue and a narrow peak in green. The intensity of the green characteristic emission depends strongly on the heating method used for synthesis and is more intense for microwave-synthesised samples.


Asunto(s)
Microondas
4.
Nanotechnology ; 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35675743

RESUMEN

Gallium oxide is an ultra-wide band gap semiconductor (Eg > 4.4 eV), best suited intrinsically for the fabrication of solar-blind photodetectors. Apart from its crystalline phases, amorphous Ga2O3 based solar-blind photodetector offer simple and facile growth without the hassle of lattice matching and high temperatures for growth and annealing. However, they often suffer from long response times which hinders any practical use. Herein, we report a simple and cost-effective method to enhance the device performance of amorphous gallium oxide thin film photodetector by nanopatterning the surface using a broad and low energy Ar+ ion beam. The ripples formed on the surface of gallium oxide thin film lead to the formation of anisotropic conduction channels along with an increase in the surface defects. The defects introduced in the system act as recombination centers for the charge carriers bringing about a reduction in the decay time of the devices, even at zero-bias. The fall time of the rippled devices, therefore, reduces, making the devices faster by more than 15 times. This approach of surface modification of gallium oxide provides a one-step, low cost method to enhance the device performance of amorphous thin films which can help in the realization of next-generation optoelectronics.

5.
Nanotechnology ; 34(4)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36265453

RESUMEN

Here, we report the room temperature (35 °C) NH3gas sensor device made from WS2nanosheets obtained via a facile and low-cost probe sonication method. The gas-sensing properties of devices made from these nanosheets were examined for various analytes such as ammonia, ethanol, methanol, formaldehyde, acetone, chloroform, and benzene. The fabricated gas sensor is selective towards NH3and exhibits excellent sensitivity, faster response, and recovery time in comparison to previously reported values. The device can detect NH3down to 5 ppm, much below the maximum allowed workspace NH3level (20 ppm), and have a sensing response of the order of 112% with a response and recovery time of 54 s and 66 s, respectively. On the other hand, a sensor made from nanostructures has a bit longer recovery time than a device made from nanosheets. This was attributed to the fact that NH3molecules adsorbed on the surface site and those trapped in between WS2layers may have different adsorption energies . In the latter case, desorption becomes difficult and may give rise to slower recovery as noticed. Further, stiffened Raman modes upon exposure to NH3reveal strong electron-phonon interaction between NH3and the WS2channel. The present work highlights the potential use of scaled two-dimensional nanosheets in sensing devices and particularly when used with inter-digitized electrodes, may offer enhanced performance.

6.
Phys Chem Chem Phys ; 24(47): 28680-28699, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36416590

RESUMEN

Advanced gas sensing devices are urgently demanded in the modern scientific world to control air pollution and protect human life. For this purpose, semiconducting electroactive materials can revolutionize the idea of conventional gas sensors. Chemi-resistive gas sensors based on electroactive hybrid organic-inorganic nanocomposites are incredibly promising gas sensing materials because they possess the advantages of excellent selectivity, high sensitivity, low response time, repeatability, high stability, cost-effectiveness, and simple fabrication techniques, and they can be operated at room temperature. This review emphasizes the recent developments of organic-inorganic hybrid nanocomposite-based electroactive gas sensors, including metal oxide nanocomposites, which are potential gas sensing materials due to the presence of numerous charge carriers. The review also focuses on nanostructured materials of different dimensions, such as semiconducting quantum dots, carbon dots, nanotubes, nanowires, and nanosheets, used for developing these gas sensing compounds and their significance and challenges. Some possible fabrication techniques for developing efficient gas sensors with different morphologies are discussed, with their probable sensing mechanism behind the detection of toxic vapours. Subsequently, a summary and possible outcome of this study, along with the various achievements and prospects in this field, are also discussed.


Asunto(s)
Nanocompuestos , Nanotubos , Puntos Cuánticos , Humanos , Óxidos , Carbono
7.
J Appl Microbiol ; 132(1): 331-339, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34161661

RESUMEN

AIM: Various industrial and municipal wastes are the major sources of heavy metal contamination in water causing significant environmental issues. Bioremediation is an effective and affordable solution for the removal of metals and metal pollutants from industrial wastewater. This study aimed to assess the efficacy of live and dead Spirogyra sp. for sorption of metals like of Cu2+ and Ni2+ . METHODS AND RESULTS: The live Spirogyra sp. was used for the uptake of Cu2+ and Ni2+ from their aqueous solutions. The equilibrium data were fitted using a Langmuir and Freundlich isotherm model; the maximum uptakes for Cu2+ and Ni2+ were 29 and 521 mg g-1 , respectively. Scanning electron microscopic (SEM) and infrared (IR) spectroscopic studies of Spirogyra sp. and treated Spirogyra sp. with specific metal ions were used to assess the bonding site and extent of sorption mechanism. CONCLUSION: The initial study showed that this biomass takes up a significant amount of metal ions. Compared to the Langmuir model, the Freundlich model showed better sorption process. The pseudo-second-order rate model represented an enhanced kinetics of metal ion adsorption using live Spirogyra sp. SIGNIFICANCE AND IMPACT OF THE STUDY: As bioaccumulation technology is environmental friendly and potentially cost-effective, live Spirogyra sp. is expected to be a good candidate for managing industrial wastewater.


Asunto(s)
Metales Pesados , Spirogyra , Contaminantes Químicos del Agua , Adsorción , Bioacumulación , Cobre , Concentración de Iones de Hidrógeno , Iones , Cinética , Níquel
8.
Part Fibre Toxicol ; 19(1): 33, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538581

RESUMEN

BACKGROUND: Copper oxide (CuO) nanoparticles (NPs) are known to trigger cytotoxicity in a variety of cell models, but the mechanism of cell death remains unknown. Here we addressed the mechanism of cytotoxicity in macrophages exposed to CuO NPs versus copper chloride (CuCl2). METHODS: The mouse macrophage cell line RAW264.7 was used as an in vitro model. Particle uptake and the cellular dose of Cu were investigated by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The deposition of Cu in lysosomes isolated from macrophages was also determined by ICP-MS. Cell viability (metabolic activity) was assessed using the Alamar Blue assay, and oxidative stress was monitored by a variety of methods including a luminescence-based assay for cellular glutathione (GSH), and flow cytometry-based detection of mitochondrial superoxide and mitochondrial membrane potential. Protein aggregation was determined by confocal microscopy using an aggresome-specific dye and protein misfolding was determined by circular dichroism (CD) spectroscopy. Lastly, proteasome activity was investigated using a fluorometric assay. RESULTS: We observed rapid cellular uptake of CuO NPs in macrophages with deposition in lysosomes. CuO NP-elicited cell death was characterized by mitochondrial swelling with signs of oxidative stress including the production of mitochondrial superoxide and cellular depletion of GSH. We also observed a dose-dependent accumulation of polyubiquitinated proteins and loss of proteasomal function in CuO NP-exposed cells, and we could demonstrate misfolding and mitochondrial translocation of superoxide dismutase 1 (SOD1), a Cu/Zn-dependent enzyme that plays a pivotal role in the defense against oxidative stress. The chelation of copper ions using tetrathiomolybdate (TTM) prevented cell death whereas inhibition of the cellular SOD1 chaperone aggravated toxicity. Moreover, CuO NP-triggered cell death was insensitive to the pan-caspase inhibitor, zVAD-fmk, and to wortmannin, an inhibitor of autophagy, implying that this was a non-apoptotic cell death. ZnO NPs, on the other hand, triggered autophagic cell death. CONCLUSIONS: CuO NPs undergo dissolution in lysosomes leading to copper-dependent macrophage cell death characterized by protein misfolding and proteasomal insufficiency. Specifically, we present novel evidence for Cu-induced SOD1 misfolding which accords with the pronounced oxidative stress observed in CuO NP-exposed macrophages. These results are relevant for our understanding of the consequences of inadvertent human exposure to CuO NPs.


Asunto(s)
Macrófagos , Nanopartículas del Metal , Nanopartículas , Superóxido Dismutasa-1 , Animales , Muerte Celular/efectos de los fármacos , Cobre , Glutatión/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Nanopartículas del Metal/toxicidad , Ratones , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Estrés Oxidativo , Pliegue de Proteína/efectos de los fármacos , Células RAW 264.7 , Superóxido Dismutasa-1/metabolismo , Superóxidos
9.
FASEB J ; 34(4): 5262-5281, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32060981

RESUMEN

The neurotoxicity of hard metal-based nanoparticles (NPs) remains poorly understood. Here, we deployed the human neuroblastoma cell line SH-SY5Y differentiated or not into dopaminergic- and cholinergic-like neurons to study the impact of tungsten carbide (WC) NPs, WC NPs sintered with cobalt (Co), or Co NPs versus soluble CoCl2 . Co NPs and Co salt triggered a dose-dependent cytotoxicity with an increase in cytosolic calcium, lipid peroxidation, and depletion of glutathione (GSH). Co NPs and Co salt also suppressed glutathione peroxidase 4 (GPX4) mRNA and protein expression. Co-exposed cells were rescued by N-acetylcysteine (NAC), a precursor of GSH, and partially by liproxstatin-1, an inhibitor of lipid peroxidation. Furthermore, in silico analyses predicted a significant correlation, based on similarities in gene expression profiles, between Co-containing NPs and Parkinson's disease, and changes in the expression of selected genes were validated by RT-PCR. Finally, experiments using primary human dopaminergic neurons demonstrated cytotoxicity and GSH depletion in response to Co NPs and CoCl2 with loss of axonal integrity. Overall, these data point to a marked neurotoxic potential of Co-based but not WC NPs and show that neuronal cell death may occur through a ferroptosis-like mechanism.


Asunto(s)
Diferenciación Celular , Cobalto/química , Neuronas Dopaminérgicas/patología , Ferroptosis , Nanopartículas del Metal/toxicidad , Enfermedades Neurodegenerativas/patología , Células Cultivadas , Neuronas Dopaminérgicas/metabolismo , Glutatión/metabolismo , Humanos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Enfermedades Neurodegenerativas/inducido químicamente
10.
Small ; 16(21): e1907686, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32227449

RESUMEN

Numerous studies have addressed the biological impact of graphene-based materials including graphene oxide (GO), yet few have focused on long-term effects. Here, RNA sequencing is utilized to unearth responses of human lung cells to GO. To this end, the BEAS-2B cell line derived from normal human bronchial epithelium is subjected to repeated, low-dose exposures of GO (1 or 5 µg mL-1 ) for 28 days or to the equivalent, cumulative amount of GO for 48 h. Then, samples are analyzed by using the NovaSeq 6000 sequencing system followed by pathway analysis and gene ontology enrichment analysis of the differentially expressed genes. Significant differences are seen between the low-dose, long-term exposures and the high-dose, short-term exposures. Hence, exposure to GO for 48 h results in mitochondrial dysfunction. In contrast, exposure to GO for 28 days is characterized by engagement of apoptosis pathways with downregulation of genes belonging to the inhibitor of apoptosis protein (IAP) family. Validation experiments confirm that long-term exposure to GO affects the apoptosis threshold in lung cells, accompanied by a loss of IAPs. These studies reveal the sensitivity of RNA-sequencing approaches and show that acute exposure to GO is not a good predictor of the long-term effects of GO.


Asunto(s)
Exposición a Riesgos Ambientales , Grafito , Secuenciación de Nucleótidos de Alto Rendimiento , Pulmón , Apoptosis/efectos de los fármacos , Grafito/toxicidad , Humanos , Pulmón/efectos de los fármacos , Factores de Tiempo
11.
Nanotechnology ; 31(22): 225208, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32059203

RESUMEN

In this article, we have demonstrated a solid carbon source such as camphor as a natural precursor to synthesize a large area mono/bi-layer graphene (MLG) sheet to fabricate a nanowire junction-based near infrared photodetectors (NIRPDs). In order to increase the surface-to-volume ratio, we have developed Si-nanowire arrays (SiNWAs) of varying lengths by etching planar Si. Then, the camphor-based MLG/Si and MLG/SiNWAs Schottky junction photodetectors have been fabricated to achieve an efficient response with self-driven properties in the near infrared (NIR) regime. Due to a balance between light absorption capability and surface recombination centers, devices having SiNWAs obtained by etching for 30 min shows a better photoresponse, sensitivity and detectivity. Fabricated NIRPDs can also be functioned as self-driven devices which are highly responsive and very stable at low optical power signals up to 2 V with a fast rise and decay time of 34/13 ms. A tremendous enhancement has been witnessed from 36 µA W-1 to 22 mA W-1 in the responsivity at 0 V for MLG/30 min SiNWAs than planar MLG/Si PDs indicating an important development of self-driven NIRPDs based on camphor-based MLG for future optoelectronic devices.

12.
Nanotechnology ; 30(31): 314001, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30889560

RESUMEN

We report a MoS2/GaN heterojunction-based gas sensor by depositing MoS2 over a GaN substrate via a highly controllable and scalable sputtering technique coupled with a post sulfurization process in a sulfur-rich environment. The microscopic and spectroscopic measurements expose the presence of highly crystalline and homogenous few atomic layer MoS2 on top of molecular beam epitaxially grown GaN film. Upon hydrogen exposure, the molecular adsorption tuned the barrier height at the MoS2/GaN interface under the reverse biased condition, thus resulting in high sensitivity. Our results reveal that temperature strongly affects the sensitivity of the device and it increases from 21% to 157% for 1% hydrogen with an increase in temperature (25-150 °C). For a deeper understanding of carrier dynamics at the heterointerface, we visualized the band alignment across the MoS2/GaN heterojunction having valence band and conduction band offset values of 1.75 and 0.28 eV. The sensing mechanism was demonstrated based on an energy band diagram at the MoS2/GaN interface in the presence and absence of hydrogen exposure. The proposed methodology can be readily applied to other combinations of heterostructures for sensing different gas analytes.

13.
Nanotechnology ; 29(46): 464001, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30168448

RESUMEN

We demonstrate a highly selective and reversible NO2 resistive gas sensor using vertically aligned MoS2 (VA-MoS2) flake networks. We synthesized horizontally and vertically aligned MoS2 flakes on SiO2/Si substrate using a kinetically controlled rapid growth CVD process. Uniformly interconnected MoS2 flakes and their orientation were confirmed by scanning electron microscopy, x-ray diffraction, Raman spectroscopy and x-ray photoelectron spectroscopy. The VA-MoS2 gas sensor showed two times higher response to NO2 compared to horizontally aligned MoS2 at room temperature. Moreover, the sensors exhibited a dramatically improved complete recovery upon NO2 exposure at its low optimum operating temperatures (100 °C). In addition, the sensing performance of the sensors was investigated with exposure to various gases such as NH3, CO2, H2, CH4 and H2S. It was observed that high response to gas directly correlates with the strong interaction of gas molecules on edge sites of the VA-MoS2. The VA-MoS2 gas sensor exhibited high response with good reversibility and selectivity towards NO2 as a result of the high aspect ratio as well as high adsorption energy on exposed edge sites.

14.
Environ Sci Technol ; 51(3): 1695-1706, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28068760

RESUMEN

The increasing applications of engineered nanomaterials (ENMs) in consumer products warrant a careful evaluation of their trophic transfer and consequent ecological impact. In the present study, a laboratory scale aquatic microbial food chain was established using bacteria (Escherichia coli (E. coli)) as a prey and ciliated protozoan (Paramecium caudatum) as a predator organism to determine the impact of cadmium telluride quantum dots (CdTe QDs). We observed that 29% of bacterivory potential of paramecium was lost, including an ∼12 h delay in doubling time on exposure to 25 mg/L CdTe QD (∼4 nm) as compared to control. The fluorescence based stoichiometric analysis revealed that 65% of the QDs bioaccumulated when paramecia were exposed to 25 mg/L QDs at 24 h. There was a significant (p < 0.05) increase in cellular cadmium (Cd) concentration at 24 h (306 ± 192 mg/L) as compared to 1 h (152 ± 50 mg/L). Moreover, the accumulation of Cd in E. coli (147 ± 25 mg/L) at 1 h of exposure to 25 mg/L QDs transferred 1.4 times higher Cd (207 ± 24 mg/L; biomagnification factor = 1.4) to its predator, paramecium.


Asunto(s)
Cadena Alimentaria , Puntos Cuánticos/toxicidad , Cadmio/toxicidad , Compuestos de Cadmio/toxicidad , Escherichia coli , Nanoestructuras , Paramecium , Telurio/toxicidad
15.
Phys Chem Chem Phys ; 19(13): 8787-8801, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28294263

RESUMEN

We report formation of aligned nanostructures on epitaxially grown polar and nonpolar GaN films via wet chemical (hot H3PO4 and KOH) etching. The morphological evolution exhibited stress relaxed faceted nanopyramids, flat/trigonal nanorods and porous structures with high hydrophilicity and reduced wettability. The nanostructured films divulged significant suppression of defects and displayed an enhanced intensity ratio of the near band edge emission to the defect band. Extensive photoemission analysis revealed variation in oxidation state along with elimination of OH- and adsorbed H2O molecules from the chemically modified surfaces. Fermi level pinning, and alteration in the surface polarity with substantial changes in the electron affinities were also perceived. The temperature dependent current-voltage analysis of the nanostructured surfaces displayed enhancement in current conduction. The in-depth analysis demonstrates that the chemically etched samples could potentially be utilized as templates in the design/growth of III-nitride based high performance devices.

16.
Phys Chem Chem Phys ; 18(11): 8005-14, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26916430

RESUMEN

The relationship of the growth temperature with stress, defect states, and electronic structure of molecular beam epitaxy grown GaN films on c-plane (0001) sapphire substrates is demonstrated. A minimum compressively stressed GaN film is grown by tuning the growth temperature. The correlation of dislocations/defects with the stress relaxation is scrutinized by high-resolution X-ray diffraction and photoluminescence measurements which show a high crystalline quality with significant reduction in the threading dislocation density and defect related bands. A substantial reduction in yellow band related defect states is correlated with the stress relaxation in the grown film. Temperature dependent Raman analysis shows the thermal stability of the stress relaxed GaN film which further reveals a downshift in the E2 (high) phonon frequency owing to the thermal expansion of the lattice at elevated temperatures. Electronic structure analysis reveals that the Fermi level of the films is pinned at the respective defect states; however, for the stress relaxed film it is located at the charge neutrality level possessing the lowest electron affinity. The analysis demonstrates that the generated stress not only affects the defect states, but also the crystal quality, surface morphology and electronic structure/properties.

17.
Phys Chem Chem Phys ; 17(23): 15201-8, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-25991084

RESUMEN

A comprehensive analysis of oxygen chemisorption on epitaxial gallium nitride (GaN) films grown at different substrate temperatures via RF-molecular beam epitaxy was carried out. Photoemission (XPS and UPS) measurements were performed to investigate the nature of the surface oxide and corresponding changes in the electronic structure. It was observed that the growth of GaN films at lower temperatures leads to a lower amount of surface oxide and vice versa was observed for a higher temperature growth. The XPS core level (CL) and valence band maximum (VBM) positions shifted towards higher binding energies (BE) with oxide coverage and revealed a downward band bending. XPS valence band spectra were de-convoluted to understand the nature of the hybridization states. UPS analysis divulged higher values of electronic affinity and ionization energy for GaN films grown at a higher substrate temperature. The surface morphology and pit structure were probed via microscopic measurements (FESEM and AFM). FESEM and AFM analysis revealed that the film surface was covered with hexagonal pits, which played a significant role in oxygen chemisorption. The favourable energetics of the pits offered an ideal site for oxygen adsorption. Pit density and pit depth were observed to be important parameters that governed the surface oxide coverage. The contribution of surface oxide was increased with an increase in average pit density as well as pit depth.

18.
J Appl Toxicol ; 35(10): 1179-88, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26086747

RESUMEN

Chromium oxide (Cr2 O3 ) nanoparticles (NPs) are being increasingly used as a catalyst for aromatic compound manufacture, abrading agents and as pigments (e.g., Viridian). Owing to increased applications, it is important to study the biological effects of Cr2 O3 NPs on human health. The lung is one of the main exposure routes to nanomaterials; therefore, the present study was designed to determine the genotoxic and apoptotic effect of Cr2 O3 NPs in human lung epithelial cells (A549). The study also elucidated the molecular mechanism of its toxicity. Cr2 O3 NPs led to DNA damage, which was deduced by comet assay and cytokinesis block micronucleus assay. The damage could be mediated by the increased levels of reactive oxygen species. Further, the oxygen species led to a decrease in mitochondrial membrane potential and an increase in the ratio of BAX/Bcl-2 leading to mitochondria-mediated apoptosis induced by Cr2 O3 NPs, which ultimately leads to cell death. Hence, there is a need of regulations to be imposed in NP usage. The study provided insight into the caspase-dependent mechanistic pathway of apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Compuestos de Cromo/toxicidad , Genes p53/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Mutágenos/toxicidad , Alveolos Pulmonares/efectos de los fármacos , Línea Celular Tumoral , Ensayo Cometa , Citocinesis , Daño del ADN , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Pruebas de Micronúcleos , Estrés Oxidativo/efectos de los fármacos , Alveolos Pulmonares/citología , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/biosíntesis
19.
Sci Rep ; 14(1): 7905, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38570529

RESUMEN

Plasmonic coatings can absorb electromagnetic radiation from visible to far-infrared spectrum for the better performance of solar panels and energy saving smart windows. For these applications, it is important for these coatings to be as thin as possible and grown at lower temperatures on arbitrary substrates like glass, silicon, or flexible polymers. Here, we tune and investigate the plasmonic resonance of titanium nitride thin films in lower thicknesses regime varying from ~ 20 to 60 nm. High-quality crystalline thin films of route-mean-square roughness less than ~ 0.5 nm were grown on a glass substrate at temperature of ~ 200 °C with bias voltage of - 60 V using cathodic vacuum arc deposition. A local surface-enhanced-plasmonic-resonance was observed between 400 and 500 nm, which further shows a blueshift in plasmonic frequency in thicker films due to the increase in the carrier mobility. These results were combined with finite-difference-time-domain numerical analysis to understand the role of thicknesses and stoichiometry on the broadening of electromagnetic absorption.

20.
ChemistryOpen ; 13(2): e202300055, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37874015

RESUMEN

This work mainly focuses on synthesizing and evaluating the efficiency of methylammonium lead halide-based perovskite (MAPbX3 ; X=Cl, Br, I) solar cells. We used the colloidal Hot-injection method (HIM) to synthesize MAPbX3 (X=Cl, Br, I) perovskites using the specific precursors and organic solvents under ambient conditions. We studied the structural, morphological and optical properties of MAPbX3 perovskites using XRD, FESEM, TEM, UV-Vis, PL and TRPL (time-resolved photoluminescence) characterization techniques. The particle size and morphology of these perovskites vary with respect to the halide variation. The MAPbI3 perovskite possesses a low band gap and low carrier lifetime but delivers the highest PCE among other halide perovskite samples, making it a promising candidate for solar cell technology. To further enrich the investigations, the conversion efficiency of the MAPbX3 perovskites has been evaluated through extensive device simulations. Here, the optical constants, band gap energy and carrier lifetime of MAPbX3 were used for simulating three different perovskite solar cells, namely I, Cl or Br halide-based perovskite solar cells. MAPbI3 , MAPbBr3 and MAPbCl3 absorber layer-based devices showed ~13.7 %, 6.9 % and 5.0 % conversion efficiency. The correlation between the experimental and SCAPS simulation data for HIM-synthesized MAPBX3 -based perovskites has been reported for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA