Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neuroinflammation ; 19(1): 246, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199097

RESUMEN

Differential microglial inflammatory responses play a role in regulation of differentiation and maturation of oligodendrocytes (OLs) in brain white matter. How microglia-OL crosstalk is altered by traumatic brain injury (TBI) and its impact on axonal myelination and neurological function impairment remain poorly understood. In this study, we investigated roles of a Na+/H+ exchanger (NHE1), an essential microglial pH regulatory protein, in microglial proinflammatory activation and OL survival and differentiation in a murine TBI model induced by controlled cortical impact. Similar TBI-induced contusion volumes were detected in the Cx3cr1-CreERT2 control (Ctrl) mice and selective microglial Nhe1 knockout (Cx3cr1-CreERT2;Nhe1flox/flox, Nhe1 cKO) mice. Compared to the Ctrl mice, the Nhe1 cKO mice displayed increased resistance to initial TBI-induced white matter damage and accelerated chronic phase of OL regeneration at 30 days post-TBI. The cKO brains presented increased anti-inflammatory phenotypes of microglia and infiltrated myeloid cells, with reduced proinflammatory transcriptome profiles. Moreover, the cKO mice exhibited accelerated post-TBI sensorimotor and cognitive functional recovery than the Ctrl mice. These phenotypic outcomes in cKO mice were recapitulated in C57BL6J wild-type TBI mice receiving treatment of a potent NHE1 inhibitor HOE642 for 1-7 days post-TBI. Taken together, these findings collectively demonstrated that blocking NHE1 protein stimulates restorative microglial activation in oligodendrogenesis and neuroprotection, which contributes to accelerated brain repair and neurological function recovery after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Sustancia Blanca , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Oligodendroglía , Recuperación de la Función
2.
Artículo en Inglés | MEDLINE | ID: mdl-37002525

RESUMEN

Neonatal exposure to decabromodiphenyl ether (PBDE-209), a widely used flame retardant, affects cognitive performances in the later stage of life in a sex-dependent manner. PBDE-209 interferes with glutamatergic signaling and N-methyl-D-aspartate receptor (NMDAR) subunits with unresolved regulatory mechanisms. This study exposed male and female mice pups through postnatal day (PND) 3-10 to PBDE-209 (oral dose: 0, 6, or 20 mg/kg body weight). The frontal cortex and hippocampus, collected from neonate (PND 11) and young (PND 60) mice, were analyzed for cAMP response element-binding protein (CREB) and RE1-silencing transcription factor/ Neuron-restrictive silencer factor (REST/NRSF) binding to NMDAR1 promoter and expression of NMDAR1 gene by electrophoretic mobility shift assay and semi-quantitative RT-PCR respectively. Behavioral changes were assessed using spontaneous alternation behavior and novel object recognition tests in young mice. In neonates, the binding of CREB was increased, while REST/NRSF was decreased significantly to their cognate NMDAR1 promoter sequences at the high dose of PBDE-209 in both the sexes. This reciprocal pattern of CREB and REST/NRSF interactions correlates with the up-regulation of NMDAR1 expression. Young males followed a similar pattern of CREB and REST/NRSF binding and NMDAR1 expression as in neonates. Surprisingly, young females did not show any alteration when compared to age-matched controls. Also, we found that only young males showed working and recognition memory deficits. These results indicate that early exposure to PBDE-209 interferes with CREB- and REST/NRSF-dependent regulation of the NMDAR1 gene in an acute setting. However, long-term effects persist only in young males that could be associated with cognitive impairment.

3.
PLoS One ; 16(9): e0257784, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34582497

RESUMEN

Drug repurposing has the potential to bring existing de-risked drugs for effective intervention in an ongoing pandemic-COVID-19 that has infected over 131 million, with 2.8 million people succumbing to the illness globally (as of April 04, 2021). We have used a novel `gene signature'-based drug repositioning strategy by applying widely accepted gene ranking algorithms to prioritize the FDA approved or under trial drugs. We mined publically available RNA sequencing (RNA-Seq) data using CLC Genomics Workbench 20 (QIAGEN) and identified 283 differentially expressed genes (FDR<0.05, log2FC>1) after a meta-analysis of three independent studies which were based on severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection in primary human airway epithelial cells. Ingenuity Pathway Analysis (IPA) revealed that SARS-CoV-2 activated key canonical pathways and gene networks that intricately regulate general anti-viral as well as specific inflammatory pathways. Drug database, extracted from the Metacore and IPA, identified 15 drug targets (with information on COVID-19 pathogenesis) with 46 existing drugs as potential-novel candidates for repurposing for COVID-19 treatment. We found 35 novel drugs that inhibit targets (ALPL, CXCL8, and IL6) already in clinical trials for COVID-19. Also, we found 6 existing drugs against 4 potential anti-COVID-19 targets (CCL20, CSF3, CXCL1, CXCL10) that might have novel anti-COVID-19 indications. Finally, these drug targets were computationally prioritized based on gene ranking algorithms, which revealed CXCL10 as the common and strongest candidate with 2 existing drugs. Furthermore, the list of 283 SARS-CoV-2-associated proteins could be valuable not only as anti-COVID-19 targets but also useful for COVID-19 biomarker development.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos/métodos , SARS-CoV-2/genética , Antivirales/uso terapéutico , Evaluación Preclínica de Medicamentos/métodos , Células Epiteliales/efectos de los fármacos , Epitelio/efectos de los fármacos , Humanos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , Sistema Respiratorio/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad
4.
Mol Neurobiol ; 53(5): 3377-3388, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26081154

RESUMEN

Traumatic brain injury (TBI) is one of the major risk factors of dementia, aging, and cognitive impairments, etc. We have previously reported that expression of the astrocytic glutamate transporter GLT-1/EAAT2 is downregulated in the pericontusional cortex of adult and old mice in post-TBI time-dependent manner, and the process of decline starts before in old than in adult TBI mice. However, relationship between age- and TBI-dependent alterations in GLT-1/EAAT2 expression and interactions of transcription factors NF-κB and N-myc with their cognate GLT-1/EAAT2 promoter sequences, an important step of its transcriptional control, is not known. To understand this, we developed TBI mouse model by modified chronic head injury (CHI) method, analyzed expression of GFAP, TNF-α, and AQP4 by RT-PCR for its validation, and analyzed interactions of NF-κB and N-myc with GLT-1/EAAT2 promoter sequences by electrophoretic mobility shift assay (EMSA). Our EMSA data revealed that interactions of NF-κB and N-myc with GLT-1/EAAT2 promoter sequences was significantly elevated in the ipsi-lateral cortex of both adult and old TBI mice in post-TBI time-dependent manner; however, these interactions started immediately in the old compared to that in adult TBI mice, which could be attributed to our previously reported age- and post-TBI time-dependent differential expression of GLT-1/EAAT2 in the pericontusional cortex.


Asunto(s)
Envejecimiento/patología , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Corteza Cerebral/patología , Transportador 2 de Aminoácidos Excitadores/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , Animales , Acuaporina 4/genética , Acuaporina 4/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones , Unión Proteica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-26413122

RESUMEN

CDRI-08 is a standardized bacoside enriched ethanolic extract of Bacopa monnieri, a nootropic plant. We reported that CDRI-08 attenuated oxidative stress and memory impairment in mice, induced by a flame retardant, PBDE-209. In order to explore the mechanism, present study was designed to examine the role of CDRI-08 on the expression of NMDAR1 (NR1) and the binding of REST/NRSF to NR1 promoter against postnatal exposure of PBDE-209. Male mice pups were orally supplemented with CDRI-08 at the doses of 40, 80, or 120 mg/kg along with PBDE-209 (20 mg/kg) during PND 3-10 and frontal cortex and hippocampus were collected at PND 11 and 60 to study the expression and regulation of NR1 by RT-PCR and electrophoretic mobility shift assay, respectively. The findings showed upregulated expression of NR1 and decreased binding of REST/NRSF to NR1 promoter after postnatal exposure of PBDE-209. Interestingly, supplementation with CDRI-08 significantly restored the expression of NR1 and binding of REST/NRSF to NR1 promoter near to the control value at the dose of 120 mg/kg. In conclusion, the results suggest that CDRI-08 possibly acts on glutamatergic system through expression and regulation of NR1 and may restore memory, impaired by PBDE-209 as reported in our previous study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA