Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Cancer Biol ; 86(Pt 2): 247-258, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35787940

RESUMEN

High-risk neuroblastoma (NB) is challenging to treat with 5-year long-term survival in patients remaining below 50% and low chances of survival after tumor relapse or recurrence. Different strategies are being tested or under evaluation to destroy resistant tumors and improve survival outcomes in NB patients. Immunotherapy, which uses certain parts of a person's immune system to recognize or kill tumor cells, effectively improves patient outcomes in several types of cancer, including NB. One of the immunotherapy strategies is to block immune checkpoint signaling in tumors to increase tumor immunogenicity and anti-tumor immunity. Immune checkpoint proteins put brakes on immune cell functions to regulate immune activation, but this activity is exploited in tumors to evade immune surveillance and attack. Immune checkpoint proteins play an essential role in NB biology and immune escape mechanisms, which makes these tumors immunologically cold. Therapeutic strategies to block immune checkpoint signaling have shown promising outcomes in NB but only in a subset of patients. However, combining immune checkpoint blockade with other therapies, including conjugated antibody-based immunotherapy, radioimmunotherapy, tumor vaccines, or cellular therapies like modified T or natural killer (NK) cells, has shown encouraging results in enhancing anti-tumor immunity in the preclinical setting. An analysis of publicly available dataset using computational tools has unraveled the complexity of multiple cancer including NB. This review comprehensively summarizes the current information on immune checkpoint molecules, their biology, role in immune suppression and tumor development, and novel therapeutic approaches combining immune checkpoint inhibitors with other therapies to combat high-risk NB.


Asunto(s)
Proteínas de Punto de Control Inmunitario , Neuroblastoma , Humanos , Recurrencia Local de Neoplasia , Neuroblastoma/terapia , Inmunoterapia/métodos , Células Asesinas Naturales
2.
Semin Cancer Biol ; 83: 227-241, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33910063

RESUMEN

Epigenetics is a process that involves the regulation of gene expression without altering the sequence of DNA. Numerous studies have documented that epigenetic mechanisms play a critical role in cell growth, differentiation, and cancer over the past decade. The well-known epigenetic modifications are either on DNA or at the histone proteins. Although several studies have focused on regulating gene expression by non-coding RNAs, the current understanding of their biological functions in various human diseases, particularly in cancers, is inadequate. Only about two percent of DNA is involved in coding the protein-coding genes, and leaving the rest 98 percent is non-coding and the scientific community regarded as junk or noise with no known purpose. Most non-coding RNAs are derived from such junk DNA and are known to be involved in various signaling pathways involving cancer initiation, progression, and the development of therapy resistance in many human cancer types. Recent studies have suggested that non-coding RNAs, especially microRNAs, piwi-interactingRNAs, and long non-coding RNAs, play a significant role in controlling epigenetic mechanism(s), indicating the potential effect of epigenetic modulation of non-coding RNAs on cancer progression. In this review article, we briefly presented epigenetic marks' characteristics, crosstalk between epigenetic modifications and microRNAs, piwi-interactingRNAs, and long non-coding RNAs to uncover the effect on the phenotype of pediatric cancers. Further, current knowledge on understanding the RNA epigenetics will help design novel therapeutics that target epigenetic regulatory networks to benefit cancer patients in the clinic.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Metilación de ADN , Epigénesis Genética , Humanos , MicroARNs/genética , Neoplasias/genética , ARN Largo no Codificante/genética
3.
Semin Cancer Biol ; 80: 306-339, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32610149

RESUMEN

Despite significant advancements made in the treatment of cancer during the past several decades, it remains one of the leading causes of death worldwide killing approximately 9.6 million people annually. The major challenge for therapeutic success is the development of chemoresistance in cancer cells against conventional chemotherapeutic agents via modulation of numerous survival and oncogenic signaling pathways. Therefore, sensitization of cancer cells to conventional drugs using multitargeted agents that suppress the survival and oncogenic pathways, in single or in combination, is an emerging strategy to overcome drug-resistance. During the last couple of decades, phytochemicals such as curcumin, resveratrol, tocotrienol and quercetin have emerged as potential chemosensitizing agents in cancer cells due to their less toxic and multitargeted properties. Numerous preclinical and clinical studies enumerated their potential to prevent drug resistance and sensitize cancer cells to chemotherapeutic agents by modulating several genes/proteins or pathways that regulate the key factors during the growth and progression of tumors such as inhibition of anti-apoptotic proteins, activation of pro-apoptotic proteins, reduced expression of different transcription factors, chemokines, enzymes, cell adhesion molecules, protein tyrosine kinases and cell cycle regulators. Therefore, natural chemosensitizing agents will have a special place in cancer treatment in the near future. This comprehensive review summarizes data obtained from various in vitro, in vivo and clinical studies to provide a new perspective for the application of agents obtained from "Mother Nature" as potential chemosensitizers for further cancer drug research and development.


Asunto(s)
Antineoplásicos , Curcumina , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Curcumina/farmacología , Curcumina/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Transducción de Señal
4.
Apoptosis ; 27(3-4): 261-282, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35122181

RESUMEN

Piperlongumine (PL, piplartine) is an alkaloid derived from the Piper longum L. (long pepper) roots. Originally discovered in 1961, the biological activities of this molecule against some cancer types was reported during the last decade. Whether PL can synergize with doxorubicin and the underlying mechanism in breast cancer remains elusive. Herein, we report the activities of PL in numerous breast cancer cell lines. PL reduced the migration and colony formation by cancer cells. An enhancement in the sub-G1 population, reduction in the mitochondrial membrane potential, chromatin condensation, DNA laddering and suppression in the cell survival proteins was observed by the alkaloid. Further, PL induced ROS generation in breast cancer cells. While TNF-α induced p65 nuclear translocation, PL suppressed the translocation in cancer cells. The expression of lncRNAs such as MEG3, GAS5 and H19 were also modulated by the alkaloid. The molecular docking studies revealed that PL can interact with both p65 and p50 subunits. PL reduced the glucose import and altered the pH of the medium towards the alkaline side. PL also suppressed the expression of glucose and lactate transporter in breast cancer cells. In tumor bearing mouse model, PL was found to synergize with doxorubicin and reduced the size, volume and weight of the tumor. Overall, the effects of doxorubicin in cancer cells are enhanced by PL. The modulation of glucose import, NF-κB activation and lncRNAs expression may have contributory role for the activities of PL in breast cancer.


Asunto(s)
Alcaloides , Antineoplásicos , Neoplasias de la Mama , Dioxolanos , Piper , ARN Largo no Codificante , Alcaloides/farmacología , Alcaloides/uso terapéutico , Animales , Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Dioxolanos/farmacología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Femenino , Glucosa/farmacología , Humanos , Ratones , Simulación del Acoplamiento Molecular , FN-kappa B/genética , FN-kappa B/metabolismo , Piper/química , ARN Largo no Codificante/genética , Especies Reactivas de Oxígeno/metabolismo
5.
J Cell Physiol ; 236(12): 7938-7965, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34105151

RESUMEN

In recent years, triple-negative breast cancer (TNBC) has emerged as the most aggressive subtype of breast cancer and is usually associated with increased mortality worldwide. The severity of TNBC is primarily observed in younger women, with cases ranging from approximately 12%-24% of all breast cancer cases. The existing hormonal therapies offer limited clinical solutions in completely circumventing the TNBC, with chemoresistance and tumor recurrences being the common hurdles in the path of TNBC treatment. Accumulating evidence has correlated the dysregulation of long noncoding RNAs (lncRNAs) with increased cell proliferation, invasion, migration, tumor growth, chemoresistance, and decreased apoptosis in TNBC. Various clinical studies have revealed that aberrant expression of lncRNAs in TNBC tissues is associated with poor prognosis, lower overall survival, and disease-free survival. Due to these specific characteristics, lncRNAs have emerged as novel diagnostic and prognostic biomarkers for TNBC treatment. However, the underlying mechanism through which lncRNAs perform their actions remains unclear, and extensive research is being carried out to reveal it. Therefore, understanding of mechanisms regulating the modulation of lncRNAs will be a substantial breakthrough in effective treatment therapies for TNBC. This review highlights the association of several lncRNAs in TNBC progression and treatment, along with their possible functions and mechanisms.


Asunto(s)
Carcinogénesis/genética , Recurrencia Local de Neoplasia/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , ARN Largo no Codificante/genética
6.
Pharmacol Res ; 163: 105302, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33246167

RESUMEN

Cannabis has long been used for healing and recreation in several regions of the world. Over 400 bioactive constituents, including more than 100 phytocannabinoids, have been isolated from this plant. The non-psychoactive cannabidiol (CBD) and the psychoactive Δ9-tetrahydrocannabinol (Δ9-THC) are the major and widely studied constituents from this plant. Cannabinoids exert their effects through the endocannabinoid system (ECS) that comprises cannabinoid receptors (CB1, CB2), endogenous ligands, and metabolizing enzymes. Several preclinical studies have demonstrated the potential of cannabinoids against leukemia, lymphoma, glioblastoma, and cancers of the breast, colorectum, pancreas, cervix and prostate. Cannabis and its constituents can modulate multiple cancer related pathways such as PKB, AMPK, CAMKK-ß, mTOR, PDHK, HIF-1α, and PPAR-γ. Cannabinoids can block cell growth, progression of cell cycle and induce apoptosis selectively in tumour cells. Cannabinoids can also enhance the efficacy of cancer therapeutics. These compounds have been used for the management of anorexia, queasiness, and pain in cancer patients. Cannabinoid based products such as dronabinol, nabilone, nabiximols, and epidyolex are now approved for medical use in cancer patients. Cannabinoids are reported to produce a favourable safety profile. However, psychoactive properties and poor bioavailability limit the use of some cannabinoids. The Academic Institutions across the globe are offering training courses on cannabis. How cannabis and its constituents exert anticancer activities is discussed in this article. We also discuss areas that require attention and more extensive research.


Asunto(s)
Antineoplásicos/uso terapéutico , Cannabinoides/uso terapéutico , Cannabis , Marihuana Medicinal , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Cannabinoides/farmacología , Cannabis/química , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Marihuana Medicinal/química , Marihuana Medicinal/historia , Marihuana Medicinal/farmacología , Marihuana Medicinal/uso terapéutico , Neoplasias/metabolismo , Receptores de Cannabinoides/metabolismo
7.
Semin Cancer Biol ; 56: 12-24, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29486318

RESUMEN

The inhibitory kappa B kinases (IKKs) and IKK related kinases are crucial regulators of the pro-inflammatory transcription factor, nuclear factor kappa B (NF-κB). The dysregulation in the activities of these kinases has been reported in several cancer types. These kinases are known to regulate survival, proliferation, invasion, angiogenesis, and metastasis of cancer cells. Thus, IKK and IKK related kinases have emerged as an attractive target for the development of cancer therapeutics. Several IKK inhibitors have been developed, few of which have advanced to the clinic. These inhibitors target IKK either directly or indirectly by modulating the activities of other signaling molecules. Some inhibitors suppress IKK activity by disrupting the protein-protein interaction in the IKK complex. The inhibition of IKK has also been shown to enhance the efficacy of conventional chemotherapeutic agents. Because IKK and NF-κB are the key components of innate immunity, suppressing IKK is associated with the risk of immune suppression. Furthermore, IKK inhibitors may hit other signaling molecules and thus may produce off-target effects. Recent studies suggest that multiple cytoplasmic and nuclear proteins distinct from NF-κB and inhibitory κB are also substrates of IKK. In this review, we discuss the utility of IKK inhibitors for cancer therapy. The limitations associated with the intervention of IKK are also discussed.


Asunto(s)
Biomarcadores de Tumor/antagonistas & inhibidores , Quinasa I-kappa B/antagonistas & inhibidores , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Estudios Clínicos como Asunto , Descubrimiento de Drogas , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida/métodos , Neoplasias/mortalidad , Neoplasias/patología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
8.
Apoptosis ; 25(9-10): 763-782, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32894380

RESUMEN

The head and neck squamous cell carcinoma (HNSCC) constitute about 90% of all head and neck cancers. HNSCC falls in the top 10 cancers in men globally. Epoxyazadiradione (EPA) and Azadiradione (AZA) are the limonoids derived from the medicinal plant Azadirachta indica (popularly known as Neem). Whether or not the limonoids exhibit activities against HNSCC and the associated mechanism remains elusive. Herein, we demonstrate that EPA exhibits stronger activity in HNSCC in comparison to AZA. The limonoids obeyed the Lipinski's rule of 5. EPA exhibited activities in a variety of HNSCC lines like suppression of the proliferation and the induction of apoptosis. The limonoid suppressed the level of proteins associated with anti-apoptosis (survivin, Bcl-2, Bcl-xL), proliferation (cyclin D1), and invasion (MMP-9). Further, the expression of proapoptotic Bax and caspase-9 cleavage was induced by the limonoid. Exposure of EPA induced reactive oxygen species (ROS) generation in the FaDu cells. N-acetyl-L-cysteine (ROS scavenger) abrogated the down-regulation of tumorigenic proteins caused by EPA exposure. EPA induced NOX-5 while suppressing the expression of programmed death-ligand 1 (PD-L1). Further, hydrogen peroxide induced NF-κB-p65 nuclear translocation and EPA inhibited the translocation. Finally, EPA modulated the expression of lncRNAs in HNSCC lines. Overall, these results have shown that EPA exhibit activities against HNSCC by targeting multiple cancer related signalling molecules. Currently, we are evaluating the efficacy of this molecule in mice models.


Asunto(s)
Antígeno B7-H1/genética , Limoninas/farmacología , NADPH Oxidasa 5/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Factor de Transcripción ReIA/genética , Animales , Apoptosis/efectos de los fármacos , Azadirachta/química , Proliferación Celular/efectos de los fármacos , Ciclina D1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Metaloproteinasa 9 de la Matriz/genética , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Survivin/genética
9.
Cell Mol Life Sci ; 76(10): 1947-1966, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30879091

RESUMEN

The long non-coding RNAs (lncRNAs) are the crucial regulators of human chronic diseases. Therefore, approaches such as antisense oligonucleotides, RNAi technology, and small molecule inhibitors have been used for the therapeutic targeting of lncRNAs. During the last decade, phytochemicals and nutraceuticals have been explored for their potential against lncRNAs. The common lncRNAs known to be modulated by phytochemicals include ROR, PVT1, HOTAIR, MALAT1, H19, MEG3, PCAT29, PANDAR, NEAT1, and GAS5. The phytochemicals such as curcumin, resveratrol, sulforaphane, berberine, EGCG, and gambogic acid have been examined against lncRNAs. In some cases, formulation of phytochemicals has also been used. The disease models where phytochemicals have been demonstrated to modulate lncRNAs expression include cancer, rheumatoid arthritis, osteoarthritis, and nonalcoholic fatty liver disease. The regulation of lncRNAs by phytochemicals can affect multi-steps of tumor development. When administered in combination with the conventional drugs, phytochemicals can also produce synergistic effects on lncRNAs leading to the sensitization of cancer cells. Phytochemicals target lncRNAs either directly or indirectly by affecting a wide variety of upstream molecules. However, the potential of phytochemicals against lncRNAs has been demonstrated mostly by preclinical studies in cancer models. How the modulation of lncRNAs by phytochemicals produce therapeutic effects on cancer and other chronic diseases is discussed in this review.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Fitoquímicos/uso terapéutico , ARN Largo no Codificante/genética , Antineoplásicos Fitogénicos/uso terapéutico , Enfermedad Crónica/tratamiento farmacológico , Humanos , Neoplasias/genética , Resveratrol/uso terapéutico
10.
Semin Cancer Biol ; 52(Pt 2): 53-65, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29196189

RESUMEN

Neuroblastoma is the most common pediatric solid tumor of neural crest origin. The current treatment options for neuroblastoma produce severe side effects. Programmed death-ligand 1 (PD-L1), chronic inflammation, and non-coding RNAs are known to play a significant role in the pathogenesis of neuroblastoma. Cancer cells and the surrounding cells in the tumor microenvironment express PD-L1. Programmed death-1 (PD-1) is a co-receptor expressed predominantly by T cells. The binding of PD-1 to its ligands, PD-L1 or PD-L2, is vital for the physiologic regulation of the immune system. Chronic inflammation is involved in the recruitment of leukocytes, production of cytokines and chemokines that in turn, lead to survival, metastasis, and angiogenesis in neuroblastoma tumors. The miRNAs and long non-coding (lnc) RNAs have emerged as a novel class of non-coding RNAs that can regulate neuroblastoma associated cell-signaling pathways. The dysregulation of PD-1/PD-L1, inflammatory pathways, lncRNAs, and miRNAs have been reported in clinical and experimental samples of neuroblastoma. These signaling molecules are currently being evaluated for their potential as the biomarker and therapeutic targets in the management of neuroblastoma. A monoclonal antibody called dinutuximab (Unituxin) that attaches to a carbohydrate molecule GD2, on the surface of many neuroblastoma cells, is being used as an immunotherapy drug for neuroblastoma treatment. Atezolizumab (Tecentriq), an engineered monoclonal antibody against PD-L1, are currently in clinical trial for neuroblastoma patients. The lncRNA/miRNA-based therapeutics is being developed to deliver tumor suppressor lncRNAs/miRNAs or silencing of oncogenic lncRNAs/miRNAs. The focus of this review is to discuss the current knowledge on the immune checkpoint molecules, PD-1/PD-L1 signaling, inflammation, and non-coding RNAs in neuroblastoma.


Asunto(s)
Antígeno B7-H1/genética , Inflamación/genética , Inflamación/inmunología , Neuroblastoma/genética , Neuroblastoma/inmunología , ARN no Traducido/genética , Animales , Humanos , Oncología Médica/métodos
11.
Semin Cancer Biol ; 46: 158-181, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28823533

RESUMEN

Although it is widely accepted that better food habits do play important role in cancer prevention and treatment, how dietary agents mediate their effects remains poorly understood. More than thousand different polyphenols have been identified from dietary plants. In this review, we discuss the underlying mechanism by which dietary agents can modulate a variety of cell-signaling pathways linked to cancer, including transcription factors, nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), activator protein-1 (AP-1), ß-catenin/Wnt, peroxisome proliferator activator receptor- gamma (PPAR-γ), Sonic Hedgehog, and nuclear factor erythroid 2 (Nrf2); growth factors receptors (EGFR, VEGFR, IGF1-R); protein Kinases (Ras/Raf, mTOR, PI3K, Bcr-abl and AMPK); and pro-inflammatory mediators (TNF-α, interleukins, COX-2, 5-LOX). In addition, modulation of proteasome and epigenetic changes by the dietary agents also play a major role in their ability to control cancer. Both in vitro and animal based studies support the role of dietary agents in cancer. The efficacy of dietary agents by clinical trials has also been reported. Importantly, natural agents are already in clinical trials against different kinds of cancer. Overall both in vitro and in vivo studies performed with dietary agents strongly support their role in cancer prevention. Thus, the famous quote "Let food be thy medicine and medicine be thy food" made by Hippocrates 25 centuries ago still holds good.


Asunto(s)
Dieta/tendencias , Epigénesis Genética , Proteínas de Neoplasias/genética , Neoplasias/dietoterapia , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/prevención & control , Transducción de Señal/efectos de los fármacos
12.
Clin Sci (Lond) ; 131(15): 1781-1799, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28679846

RESUMEN

Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings.


Asunto(s)
Antineoplásicos/farmacología , Curcumina/farmacología , Transducción de Señal/efectos de los fármacos , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Curcumina/uso terapéutico , Receptores ErbB/fisiología , Humanos , FN-kappa B/fisiología , Neoplasias/tratamiento farmacológico , Neoplasias/fisiopatología , Factor de Transcripción STAT3/fisiología
13.
Br J Cancer ; 115(7): 814-24, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27575851

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignancies worldwide and even develops resistance to chemotherapeutic agents over time. As a result survival for patients with CRC remains poor. METHOD: We investigated both in vitro and in vivo effects of γ-tocotrienol (γ-T3) alone and in combination with capecitabine. Apoptosis and cytotoxicity assays were performed by MTT and FACS analysis, whereas expression of proteins was investigated using western blotting and immunohistochemistry. RESULTS: The γ-T3 inhibited the proliferation of CRC cells with wild-type or mutated KRAS. It also induced apoptosis, inhibited colony formation, and suppressed key regulators of cell survival, cell proliferation, invasion, angiogenesis, and metastasis. Furthermore, γ-T3 enhanced the anticancer effects of capecitabine in CRC cells. In a nude mouse xenograft model of human CRC, oral administration of γ-T3 inhibited tumour growth and enhanced the antitumour efficacy of capecitabine. Western blot and immunohistochemical analysis results indicated that expression of Ki-67, cyclin D1, MMP-9, CXCR4, NF-κB/p65, and VEGF was lower in tumour tissue from the combination treatment group. Combination treatment also downregulated NF-κB and NF-κB-regulated gene products. CONCLUSIONS: Our findings suggest that γ-T3 inhibited the growth of human CRC and sensitised CRC to capecitabine by regulating proteins linked to tumourigenesis.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antimetabolitos Antineoplásicos/uso terapéutico , Capecitabina/uso terapéutico , Cromanos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Vitamina E/análogos & derivados , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromanos/farmacología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Genes ras , Humanos , Masculino , Ratones , Ratones Desnudos , Mutación , FN-kappa B/metabolismo , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Ensayo de Tumor de Célula Madre , Vitamina E/farmacología , Vitamina E/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Pharmacol Res ; 107: 234-242, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27025786

RESUMEN

BACKGROUND: Tumor necrosis factor-α (TNF-α) is a key inflammatory mediator and its reduction is a therapeutic target in several inflammatory diseases. Curcumin, a bioactive polyphenol from turmeric, has been shown in several preclinical studies to block TNF-α effectively. However, clinical evidence has not been fully conclusive. OBJECTIVE: The aim of the present meta-analysis was to evaluate the efficacy of curcumin supplementation on circulating levels of TNF-α in randomized controlled trials (RCTs). METHODS: The search included PubMed-Medline, Scopus, Web of Science and Google Scholar databases by up to September 21, 2015, to identify RCTs investigating the impact of curcumin on circulating TNF-α concentration. Quantitative data synthesis was performed using a random-effects model, with weighed mean difference (WMD) and 95% confidence interval (CI) as summary statistics. Meta-regression and leave-one-out sensitivity analyses were performed to assess the modifiers of treatment response. RESULTS: Eight RCTs comprising nine treatment arms were finally selected for the meta-analysis. There was a significant reduction of circulating TNF-α concentrations following curcumin supplementation (WMD: -4.69pg/mL, 95% CI: -7.10, -2.28, p<0.001). This effect size was robust in sensitivity analysis. Meta-regression did not suggest any significant association between the circulating TNF-α-lowering effects of curcumin with either dose or duration (slope: 0.197; 95% CI: -1.73, 2.12; p=0.841) of treatment. CONCLUSION: This meta-analysis of RCTs suggested a significant effect of curcumin in lowering circulating TNF-α concentration.


Asunto(s)
Curcumina/farmacología , Factor de Necrosis Tumoral alfa/sangre , Animales , Regulación hacia Abajo , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
15.
J Biol Chem ; 288(45): 32343-32356, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24078627

RESUMEN

Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown efficacy in a phase 2 clinical trial, development of resistance to TRAIL by tumor cells is a major roadblock. We investigated whether azadirone, a limonoidal tetranortriterpene, can sensitize human tumor cells to TRAIL. Results indicate that azadirone sensitized cancer cells to TRAIL. The limonoid induced expression of death receptor (DR) 5 and DR4 but did not affect expression of decoy receptors in cancer cells. The induction of DRs was mediated through activation of ERK and through up-regulation of a transcription factor CCAAT enhancer-binding protein homologous protein (CHOP) as silencing of these signaling molecules abrogated the effect of azadirone. These effects of azadirone were cancer cell-specific. The CHOP binding site on the DR5 gene was required for induction of DR5 by azadirone. Up-regulation of DRs was mediated through the generation of reactive oxygen species (ROS) as ROS scavengers reduced the effect of azadirone on ERK activation, CHOP up-regulation, DR induction, and TRAIL sensitization. The induction of DRs by this limonoid was independent of p53, but sensitization to TRAIL was p53-dependent. The limonoid down-regulated the expression of cell survival proteins and up-regulated the proapoptotic proteins. The combination of azadirone with TRAIL was found to be additive at concentrations lower than IC50, whereas at higher concentrations, the combination was synergistic. Overall, this study indicates that azadirone can sensitize cancer cells to TRAIL through ROS-ERK-CHOP-mediated up-regulation of DR5 and DR4 signaling, down-regulation of cell survival proteins, and up-regulation of proapoptotic proteins.


Asunto(s)
Antineoplásicos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Limoninas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Elementos de Respuesta , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Factor de Transcripción CHOP/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Reguladoras de la Apoptosis/biosíntesis , Línea Celular Tumoral , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Factor de Transcripción CHOP/genética , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba/efectos de los fármacos
16.
Blood ; 119(3): 651-65, 2012 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-22053109

RESUMEN

Although activity that induced tumor regression was observed and termed tumor necrosis factor (TNF) as early as the 1960s, the true identity of TNF was not clear until 1984, when Aggarwal and coworkers reported, for the first time, the isolation of 2 cytotoxic factors: one, derived from macrophages (molecular mass 17 kDa), was named TNF, and the second, derived from lymphocytes (20 kDa), was named lymphotoxin. Because the 2 cytotoxic factors exhibited 50% amino acid sequence homology and bound to the same receptor, they came to be called TNF-α and TNF-ß. Identification of the protein sequences led to cloning of their cDNA. Based on sequence homology to TNF-α, now a total of 19 members of the TNF superfamily have been identified, along with 29 interacting receptors, and several molecules that interact with the cytoplasmic domain of these receptors. The roles of the TNF superfamily in inflammation, apoptosis, proliferation, invasion, angiogenesis, metastasis, and morphogenesis have been documented. Their roles in immunologic, cardiovascular, neurologic, pulmonary, and metabolic diseases are becoming apparent. TNF superfamily members are active targets for drug development, as indicated by the recent approval and expanding market of TNF blockers used to treat rheumatoid arthritis, psoriasis, Crohns disease, and osteoporosis, with a total market of more than US $20 billion. As we learn more about this family, more therapeutics will probably emerge. In this review, we summarize the initial discovery of TNF-α, and the insights gained regarding the roles of this molecule and its related family members in normal physiology and disease.


Asunto(s)
Neoplasias/inmunología , Neoplasias/fisiopatología , Factor de Necrosis Tumoral alfa/historia , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Humanos
17.
Arch Biochem Biophys ; 559: 91-9, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24946050

RESUMEN

Human tumor necrosis factor (TNF), first isolated by our group as an anticancer agent, has been now shown to be a primary mediator of inflammation. Till today 19 different members of the TNF superfamily which interact with 29 different receptors, have been identified. Most members of this family exhibit pro-inflammatory activities, in part through the activation of the transcription factor, nuclear factor-kappaB (NF-κB). Thus TNF and the related pro-inflammatory cytokines have been shown to play a key role in most chronic diseases such as cancer, rheumatoid arthritis, cardiovascular diseases, psoriasis, neurologic diseases, Crohn's disease, and metabolic diseases. Therefore, agents that can modulate the TNF-mediated inflammatory pathways may have potential against these pro-inflammatory diseases. Although blockers of TNF-α, such as infliximab (antibody against TNF-α), adalimumab (humanized antibody against TNF-α), and etanercept (soluble form of TNFR2) have been approved for human use, these blockers exhibit numerous side effects. In this review, we describe various plant-derived polyphenols that can suppress TNF-α activated inflammatory pathways both in vitro and in vivo. These polyphenols include curcumin, resveratrol, genistein, epigallocatechin gallate, flavopiridol, silymarin, emodin, morin isoliquiritigenin, naringenin, ellagic acid, apigenin, kaempferol, catechins, myricetin, xanthohumol, fisetin, vitexin, escin, mangostin and others. Thus these polyphenols are likely to have potential against various pro-inflammatory diseases.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Polifenoles/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Biomarcadores/metabolismo , Humanos , Inflamación/metabolismo , Plantas/química
18.
FASEB J ; 27(9): 3871-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23752204

RESUMEN

Sarcolipin (SLN) regulates muscle-based nonshivering thermogenesis and is up-regulated with high-fat feeding (HFF). To investigate whether other muscle-based thermogenic systems compensate for a lack of Sln and to firmly establish SLN as a mediator of diet-induced thermogenesis (DIT), we measured muscle and whole-body energy expenditure in chow- and high-fat-fed Sln(-/-) and wild-type (WT) mice. Following HFF, resting muscle metabolic rate (VO2, µl/g/s) was increased similarly in WT (0.28±0.02 vs. 0.31±0.03) and Sln(-/-) (0.23±0.03 vs. 0.35±0.02) mice due to increased sympathetic nervous system activation in Sln(-/-) mice; however, whole-body metabolic rate (VO2, ml/kg/h) was lower in Sln(-/-) compared with WT mice following HFF but only during periods when the mice were active in their cages (WT, 2894±87 vs. Sln(-/-), 2708±61). Treatment with the ß-adrenergic receptor (ß-AR) antagonist propranolol during HFF completely prevented muscle-based DIT in Sln(-/-) mice; however, it had no effect in WT mice, resulting in greater differences in whole-body metabolic rate and diet-induced weight gain. Our results suggest that ß-AR signaling partially compensates for a lack of SLN to activate muscle-based DIT, but SLN is the primary and more effective mediator.


Asunto(s)
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Proteolípidos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Termogénesis/fisiología , Animales , Calcio/metabolismo , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Masculino , Ratones , Ratones Noqueados , Termogénesis/genética
19.
Mol Ther Nucleic Acids ; 35(2): 101543, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38817681

RESUMEN

Neuroblastoma is the most devastating extracranial solid malignancy in children. Despite an intense treatment regimen, the prognosis for high-risk neuroblastoma patients remains poor, with less than 40% survival. So far, MYCN amplification status is considered the most prognostic factor but corresponds to only ∼25% of neuroblastoma patients. Therefore, it is essential to identify a better prognosis and therapy response marker in neuroblastoma patients. We applied robust bioinformatic data mining tools, such as weighted gene co-expression network analysis, cisTarget, and single-cell regulatory network inference and clustering on two neuroblastoma patient datasets. We found Sin3A-associated protein 30 (SAP30), a driver transcription factor positively associated with high-risk, progression, stage 4, and poor survival in neuroblastoma patient cohorts. Tumors of high-risk neuroblastoma patients and relapse-specific patient-derived xenografts showed higher SAP30 levels. The advanced pharmacogenomic analysis and CRISPR-Cas9 screens indicated that SAP30 essentiality is associated with cisplatin resistance and further showed higher levels in cisplatin-resistant patient-derived xenograft tumor cell lines. Silencing of SAP30 induced cell death in vitro and led to a reduced tumor burden and size in vivo. Altogether, these results indicate that SAP30 is a better prognostic and cisplatin-resistance marker and thus a potential drug target in high-risk neuroblastoma.

20.
Cell Signal ; 119: 111181, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643946

RESUMEN

Prohibitin (PHB) is a pleiotropic molecule with a variety of known functions and subcellular locations. PHB's function in breast cancer is poorly understood. Herein, we report that PHB is expressed in cancer types of diverse origin including breast cancer. The cancer patients with changes in PHB were reported to have significantly reduced 'overall survival' in comparison to the cases without alterations in PHB. The expression of PHB was increased by H2O2 and also by Moringin (MG), which is an isothiocyanate derived from the seeds of Moringa oleifera. MG interacted with PHB, DRP1, and SLP2 and inhibited the growth of MCF-7 and MDAMB-231 cells. The isothiocyanate triggered apoptosis in breast cancer cells as revealed by AO/PI assay, phosphatidylserine externalization, cell cycle analysis and DAPI staining. MG induced proapoptotic proteins expression such as cytochrome c, p53, and cleaved caspase-7. Further, cell survival proteins such as survivin, Bcl-2, and Bcl-xL were suppressed. A depolarization of membrane potential suggested that the apoptosis was triggered through mitochondria. The isothiocyanate suppressed the cancer cell migration and interacted with NF-κB subunits. MG suppressed p65 nuclear translocation induced by TNF-α. The reactive oxygen species generation was also induced by the isothiocyanate in breast cancer cells. MG also modulated the expression of lncRNAs. Collectively, the functions of PHB in breast cancer growth is evident from this study. The activities of MG against breast cancer might result from its ability to modulate multiple cancer-related targets.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Isotiocianatos , Prohibitinas , Transducción de Señal , Humanos , Isotiocianatos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Represoras/metabolismo , Línea Celular Tumoral , Células MCF-7 , Movimiento Celular/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , FN-kappa B/metabolismo , Proliferación Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA