Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.342
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 20(3): 350-361, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30718914

RESUMEN

Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.


Asunto(s)
Agammaglobulinemia/inmunología , Linfocitos B/inmunología , Proteínas de Transporte de Catión/inmunología , Zinc/inmunología , Agammaglobulinemia/genética , Agammaglobulinemia/metabolismo , Animales , Linfocitos B/metabolismo , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/genética , Preescolar , Citosol/inmunología , Citosol/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Linaje , Zinc/metabolismo
2.
Mol Cell ; 83(18): 3314-3332.e9, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37625404

RESUMEN

Hsp104 is an AAA+ protein disaggregase that solubilizes and reactivates proteins trapped in aggregated states. We have engineered potentiated Hsp104 variants to mitigate toxic misfolding of α-synuclein, TDP-43, and FUS implicated in fatal neurodegenerative disorders. Though potent disaggregases, these enhanced Hsp104 variants lack substrate specificity and can have unfavorable off-target effects. Here, to lessen off-target effects, we engineer substrate-specific Hsp104 variants. By altering Hsp104 pore loops that engage substrate, we disambiguate Hsp104 variants that selectively suppress α-synuclein toxicity but not TDP-43 or FUS toxicity. Remarkably, α-synuclein-specific Hsp104 variants emerge that mitigate α-synuclein toxicity via distinct ATPase-dependent mechanisms involving α-synuclein disaggregation or detoxification of soluble α-synuclein conformers. Importantly, both types of α-synuclein-specific Hsp104 variant reduce dopaminergic neurodegeneration in a C. elegans model of Parkinson's disease more effectively than non-specific variants. We suggest that increasing the substrate specificity of enhanced disaggregases could be applied broadly to tailor therapeutics for neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , alfa-Sinucleína/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo
3.
Cell ; 156(1-2): 170-82, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439375

RESUMEN

There are no therapies that reverse the proteotoxic misfolding events that underpin fatal neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Hsp104, a conserved hexameric AAA+ protein from yeast, solubilizes disordered aggregates and amyloid but has no metazoan homolog and only limited activity against human neurodegenerative disease proteins. Here, we reprogram Hsp104 to rescue TDP-43, FUS, and α-synuclein proteotoxicity by mutating single residues in helix 1, 2, or 3 of the middle domain or the small domain of nucleotide-binding domain 1. Potentiated Hsp104 variants enhance aggregate dissolution, restore proper protein localization, suppress proteotoxicity, and in a C. elegans PD model attenuate dopaminergic neurodegeneration. Potentiating mutations reconfigure how Hsp104 subunits collaborate, desensitize Hsp104 to inhibition, obviate any requirement for Hsp70, and enhance ATPase, translocation, and unfoldase activity. Our work establishes that disease-associated aggregates and amyloid are tractable targets and that enhanced disaggregases can restore proteostasis and mitigate neurodegeneration.


Asunto(s)
Caenorhabditis elegans , Modelos Animales de Enfermedad , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/química , Humanos , Modelos Moleculares , Mutagénesis , Neuronas/citología , Neuronas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Pliegue de Proteína , Estructura Terciaria de Proteína , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Deficiencias en la Proteostasis/terapia , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , alfa-Sinucleína/metabolismo
4.
Nature ; 611(7935): 312-319, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36261521

RESUMEN

Infectious diseases are among the strongest selective pressures driving human evolution1,2. This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis3. This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population4. To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 245 variants that are highly differentiated within the London dataset, four of which were replicated in an independent cohort from Denmark, and represent the strongest candidates for positive selection. The selected allele for one of these variants, rs2549794, is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease.


Asunto(s)
ADN Antiguo , Predisposición Genética a la Enfermedad , Inmunidad , Peste , Selección Genética , Yersinia pestis , Humanos , Aminopeptidasas/genética , Aminopeptidasas/inmunología , Peste/genética , Peste/inmunología , Peste/microbiología , Peste/mortalidad , Yersinia pestis/inmunología , Yersinia pestis/patogenicidad , Selección Genética/inmunología , Europa (Continente)/epidemiología , Europa (Continente)/etnología , Inmunidad/genética , Conjuntos de Datos como Asunto , Londres/epidemiología , Dinamarca/epidemiología
5.
Cell ; 146(1): 37-52, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21700325

RESUMEN

Parkinson's disease (PD), an adult neurodegenerative disorder, has been clinically linked to the lysosomal storage disorder Gaucher disease (GD), but the mechanistic connection is not known. Here, we show that functional loss of GD-linked glucocerebrosidase (GCase) in primary cultures or human iPS neurons compromises lysosomal protein degradation, causes accumulation of α-synuclein (α-syn), and results in neurotoxicity through aggregation-dependent mechanisms. Glucosylceramide (GlcCer), the GCase substrate, directly influenced amyloid formation of purified α-syn by stabilizing soluble oligomeric intermediates. We further demonstrate that α-syn inhibits the lysosomal activity of normal GCase in neurons and idiopathic PD brain, suggesting that GCase depletion contributes to the pathogenesis of sporadic synucleinopathies. These findings suggest that the bidirectional effect of α-syn and GCase forms a positive feedback loop that may lead to a self-propagating disease. Therefore, improved targeting of GCase to lysosomes may represent a specific therapeutic approach for PD and other synucleinopathies.


Asunto(s)
Enfermedad de Gaucher/metabolismo , Glucosilceramidasa/metabolismo , alfa-Sinucleína/metabolismo , Animales , Encéfalo/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Retroalimentación Fisiológica , Enfermedad de Gaucher/patología , Glucosilceramidas/metabolismo , Humanos , Lisosomas/metabolismo , Ratones , Neuronas/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(7): e2210712120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745808

RESUMEN

Whole-exome sequencing of Parkinson's disease (PD) patient DNA identified single-nucleotide polymorphisms (SNPs) in the tyrosine nonreceptor kinase-2 (TNK2) gene. Although this kinase had a previously demonstrated activity in preventing the endocytosis of the dopamine reuptake transporter (DAT), a causal role for TNK2-associated dysfunction in PD remains unresolved. We postulated the dopaminergic neurodegeneration resulting from patient-associated variants in TNK2 were a consequence of aberrant or prolonged TNK2 overactivity, the latter being a failure in TNK2 degradation by an E3 ubiquitin ligase, neuronal precursor cell-expressed developmentally down-regulated-4 (NEDD4). Interestingly, systemic RNA interference protein-3 (SID-3) is the sole TNK2 ortholog in the nematode Caenorhabditis elegans, where it is an established effector of epigenetic gene silencing mediated through the dsRNA-transporter, SID-1. We hypothesized that TNK2/SID-3 represents a node of integrated dopaminergic and epigenetic signaling essential to neuronal homeostasis. Use of a TNK2 inhibitor (AIM-100) or a NEDD4 activator [N-aryl benzimidazole 2 (NAB2)] in bioassays for either dopamine- or dsRNA-uptake into worm dopaminergic neurons revealed that sid-3 mutants displayed robust neuroprotection from 6-hydroxydopamine (6-OHDA) exposures, as did AIM-100 or NAB2-treated wild-type animals. Furthermore, NEDD4 activation by NAB2 in rat primary neurons correlated to a reduction in TNK2 levels and the attenuation of 6-OHDA neurotoxicity. CRISPR-edited nematodes engineered to endogenously express SID-3 variants analogous to TNK2 PD-associated SNPs exhibited enhanced susceptibility to dopaminergic neurodegeneration and circumvented the RNAi resistance characteristic of SID-3 dysfunction. This research exemplifies a molecular etiology for PD whereby dopaminergic and epigenetic signaling are coordinately regulated to confer susceptibility or resilience to neurodegeneration.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratas , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Oxidopamina , Neuroprotección/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neuronas Dopaminérgicas/metabolismo , Epigénesis Genética , Modelos Animales de Enfermedad
7.
PLoS Genet ; 19(2): e1010606, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36745687

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder caused by progressive loss of motor neurons and there is currently no effective therapy. Cytoplasmic mislocalization and aggregation of TAR DNA-binding protein 43 kDa (TDP-43) within the CNS is a pathological hallmark in sporadic ALS and prion-like propagation of pathogenic TDP-43 is thought to be implicated in disease progression. However, cell-to-cell transmission of pathogenic TDP-43 in the human CNS has not been confirmed experimentally. Here we used induced pluripotent stem cells (iPSCs)-derived cerebral organoids as recipient CNS tissue model that are anatomically relevant human brain. We injected postmortem spinal cord protein extracts individually from three non-ALS or five sporadic ALS patients containing pathogenic TDP-43 into the cerebral organoids to validate the templated propagation and spreading of TDP-43 pathology in human CNS tissue. We first demonstrated that the administration of spinal cord extracts from an ALS patient induced the formation of TDP-43 pathology that progressively spread in a time-dependent manner in cerebral organoids, suggesting that pathogenic TDP-43 from ALS functioned as seeds and propagated cell-to-cell to form de novo TDP-43 pathology. We also reported that the administration of ALS patient-derived protein extracts caused astrocyte proliferation to form astrogliosis in cerebral organoids, reproducing the pathological feature seen in ALS. Moreover, we showed pathogenic TDP-43 induced cellular apoptosis and that TDP-43 pathology correlated with genomic damage due to DNA double-strand breaks. Thus, our results provide evidence that patient-derived pathogenic TDP-43 can mimic the prion-like propagation of TDP-43 pathology in human CNS tissue. Our findings indicate that our assays with human cerebral organoids that replicate ALS pathophysiology have a promising strategy for creating readouts that could be used in future drug discovery efforts against ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Priones , Humanos , Esclerosis Amiotrófica Lateral/patología , Médula Espinal/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Priones/metabolismo , Organoides/metabolismo
8.
Am J Hum Genet ; 109(12): 2270-2282, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368327

RESUMEN

An Xq22.2 region upstream of PLP1 has been proposed to underly a neurological disease trait when deleted in 46,XX females. Deletion mapping revealed that heterozygous deletions encompassing the smallest region of overlap (SRO) spanning six Xq22.2 genes (BEX3, RAB40A, TCEAL4, TCEAL3, TCEAL1, and MORF4L2) associate with an early-onset neurological disease trait (EONDT) consisting of hypotonia, intellectual disability, neurobehavioral abnormalities, and dysmorphic facial features. None of the genes within the SRO have been associated with monogenic disease in OMIM. Through local and international collaborations facilitated by GeneMatcher and Matchmaker Exchange, we have identified and herein report seven de novo variants involving TCEAL1 in seven unrelated families: three hemizygous truncating alleles; one hemizygous missense allele; one heterozygous TCEAL1 full gene deletion; one heterozygous contiguous deletion of TCEAL1, TCEAL3, and TCEAL4; and one heterozygous frameshift variant allele. Variants were identified through exome or genome sequencing with trio analysis or through chromosomal microarray. Comparison with previously reported Xq22 deletions encompassing TCEAL1 identified a more-defined syndrome consisting of hypotonia, abnormal gait, developmental delay/intellectual disability especially affecting expressive language, autistic-like behavior, and mildly dysmorphic facial features. Additional features include strabismus, refractive errors, variable nystagmus, gastroesophageal reflux, constipation, dysmotility, recurrent infections, seizures, and structural brain anomalies. An additional maternally inherited hemizygous missense allele of uncertain significance was identified in a male with hypertonia and spasticity without syndromic features. These data provide evidence that TCEAL1 loss of function causes a neurological rare disease trait involving significant neurological impairment with features overlapping the EONDT phenotype in females with the Xq22 deletion.


Asunto(s)
Trastorno Autístico , Discapacidad Intelectual , Femenino , Humanos , Masculino , Trastorno Autístico/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Hipotonía Muscular/genética , Hipotonía Muscular/complicaciones , Fenotipo , Síndrome , Factores de Transcripción/genética
9.
Ann Neurol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078117

RESUMEN

OBJECTIVE: Restless legs syndrome (RLS) is a neurological condition that causes uncomfortable sensations in the legs and an irresistible urge to move them, typically during periods of rest. The genetic basis and pathophysiology of RLS are incompletely understood. We sought to identify additional novel genetic risk factors associated with RLS susceptibility. METHODS: We performed a whole-genome sequencing and genome-wide association meta-analysis of RLS cases (n = 9,851) and controls (n = 38,957) in 3 population-based biobanks (All of Us, Canadian Longitudinal Study on Aging, and CARTaGENE). RESULTS: Genome-wide association analysis identified 9 independent risk loci, of which 8 had been previously reported, and 1 was a novel risk locus (LMX1B, rs35196838, OR 1.14, 95% CI 1.09-1.19, p value = 2.2 × 10-9). Furthermore, a transcriptome-wide association study also identified GLO1 and a previously unreported gene, ELFN1. A genetic correlation analysis revealed significant common variant overlaps between RLS and neuroticism (rg = 0.40, se = 0.08, p value = 5.4 × 10-7), depression (rg = 0.35, se = 0.06, p value = 2.17 × 10-8), and intelligence (rg = -0.20, se = 0.06, p value = 4.0 × 10-4). INTERPRETATION: Our study expands the understanding of the genetic architecture of RLS, and highlights the contributions of common variants to this prevalent neurological disorder. ANN NEUROL 2024.

10.
FASEB J ; 38(16): e23885, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39139039

RESUMEN

Liver kinase B1 (LKB1/STK11) is an important regulator of pancreatic ß-cell identity and function. Elimination of Lkb1 from the ß-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood. Here, we explore the impact of ß cell-selective deletion of Lkb1 on chromatin accessibility in mouse pancreatic islets. To characterize the role of LKB1 in the regulation of gene expression at the transcriptional level, we combine these data with a map of islet active transcription start sites and histone marks. We demonstrate that LKB1 elimination from ß-cells results in widespread changes in chromatin accessibility, correlating with changes in transcript levels. Changes occurred in hundreds of promoter and enhancer regions, many of which were close to neuronal genes. We reveal that dysregulated enhancers are enriched in binding motifs for transcription factors (TFs) important for ß-cell identity, such as FOXA, MAFA or RFX6, and we identify microRNAs (miRNAs) that are regulated by LKB1 at the transcriptional level. Overall, our study provides important new insights into the epigenetic mechanisms by which LKB1 regulates ß-cell identity and function.


Asunto(s)
Epigénesis Genética , Células Secretoras de Insulina , Proteínas Serina-Treonina Quinasas , Animales , Células Secretoras de Insulina/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ratones Noqueados , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Regiones Promotoras Genéticas , Ratones Endogámicos C57BL , Masculino
11.
FASEB J ; 38(8): e23610, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38661000

RESUMEN

Variants at the SLC30A8 locus are associated with type 2 diabetes (T2D) risk. The lead variant, rs13266634, encodes an amino acid change, Arg325Trp (R325W), at the C-terminus of the secretory granule-enriched zinc transporter, ZnT8. Although this protein-coding variant was previously thought to be the sole driver of T2D risk at this locus, recent studies have provided evidence for lowered expression of SLC30A8 mRNA in protective allele carriers. In the present study, we examined multiple variants that influence SLC30A8 allele-specific expression. Epigenomic mapping has previously identified an islet-selective enhancer cluster at the SLC30A8 locus, hosting multiple T2D risk and cASE associations, which is spatially associated with the SLC30A8 promoter and additional neighboring genes. Here, we show that deletion of variant-bearing enhancer regions using CRISPR-Cas9 in human-derived EndoC-ßH3 cells lowers the expression of SLC30A8 and several neighboring genes and improves glucose-stimulated insulin secretion. While downregulation of SLC30A8 had no effect on beta cell survival, loss of UTP23, RAD21, or MED30 markedly reduced cell viability. Although eQTL or cASE analyses in human islets did not support the association between these additional genes and diabetes risk, the transcriptional regulator JQ1 lowered the expression of multiple genes at the SLC30A8 locus and enhanced stimulated insulin secretion.


Asunto(s)
Diabetes Mellitus Tipo 2 , Elementos de Facilitación Genéticos , Células Secretoras de Insulina , Transportador 8 de Zinc , Humanos , Transportador 8 de Zinc/genética , Transportador 8 de Zinc/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Supervivencia Celular/genética , Variación Genética , Insulina/metabolismo , Línea Celular
12.
PLoS Genet ; 18(8): e1010115, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35984862

RESUMEN

The fine-tuning of gene expression is critical for all cellular processes; aberrations in this activity can lead to pathology, and conversely, resilience. As their role in coordinating organismal responses to both internal and external factors have increasingly come into focus, small non-coding RNAs have emerged as an essential component to disease etiology. Using Systemic RNA interference Defective (SID) mutants of the nematode Caenorhabditis elegans, deficient in gene silencing, we examined the potential consequences of dysfunctional epigenomic regulation in the context of Parkinson's disease (PD). Specifically, the loss of either the sid-1 or sid-3 genes, which encode a dsRNA transporter and an endocytic regulatory non-receptor tyrosine kinase, respectively, conferred neuroprotection to dopaminergic (DA) neurons in an established transgenic C. elegans strain wherein overexpression of human α-synuclein (α-syn) from a chromosomally integrated multicopy transgene causes neurodegeneration. We further show that knockout of a specific microRNA, mir-2, attenuates α-syn neurotoxicity; suggesting that the native targets of mir-2-dependent gene silencing represent putative neuroprotective modulators. In support of this, we demonstrated that RNAi knockdown of multiple mir-2 targets enhanced α-syn-induced DA neurodegeneration. Moreover, we demonstrate that mir-2 overexpression originating in the intestine can induce neurodegeneration of DA neurons, an effect that was reversed by pharmacological inhibition of SID-3 activity. Interestingly, sid-1 mutants retained mir-2-induced enhancement of neurodegeneration. Transcriptomic analysis of α-syn animals with and without a sid-1 mutation revealed 27 differentially expressed genes with human orthologs related to a variety of diseases, including PD. Among these was pgp-8, encoding a P-glycoprotein-related ABC transporter. Notably, sid-1; pgp-8 double mutants abolished the neurodegeneration resulting from intestinal mir-2 overexpression. This research positions known regulators of small RNA-dependent gene silencing within a framework that facilitates mechanistic evaluation of epigenetic responses to exogenous and endogenous factors influencing DA neurodegeneration, revealing a path toward new targets for therapeutic intervention of PD.


Asunto(s)
Proteínas de Caenorhabditis elegans , Enfermedad de Parkinson , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Enfermedad de Parkinson/patología , Interferencia de ARN , ARN Bicatenario/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(11): e2113074119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35254894

RESUMEN

SignificanceWith obesity on the rise, there is a growing appreciation for intracellular lipid droplet (LD) regulation. Here, we show how saturated fatty acids (SFAs) reduce fat storage-inducing transmembrane protein 2 (FIT2)-facilitated, pancreatic ß cell LD biogenesis, which in turn induces ß cell dysfunction and death, leading to diabetes. This mechanism involves direct acylation of FIT2 cysteine residues, which then marks the FIT2 protein for endoplasmic reticulum (ER)-associated degradation. Loss of ß cell FIT2 and LDs reduces insulin secretion, increases intracellular ceramides, stimulates ER stress, and exacerbates diet-induced diabetes in mice. While palmitate and stearate degrade FIT2, unsaturated fatty acids such as palmitoleate and oleate do not, results of which extend to nutrition and diabetes.


Asunto(s)
Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/genética , Animales , Línea Celular , Estrés del Retículo Endoplásmico , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Intolerancia a la Glucosa , Proteínas de la Membrana/metabolismo , Ratones , Mutación , Palmitatos/metabolismo , Estearatos/metabolismo
14.
Diabetologia ; 67(5): 885-894, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38374450

RESUMEN

AIMS/HYPOTHESIS: People with type 2 diabetes are heterogeneous in their disease trajectory, with some progressing more quickly to insulin initiation than others. Although classical biomarkers such as age, HbA1c and diabetes duration are associated with glycaemic progression, it is unclear how well such variables predict insulin initiation or requirement and whether newly identified markers have added predictive value. METHODS: In two prospective cohort studies as part of IMI-RHAPSODY, we investigated whether clinical variables and three types of molecular markers (metabolites, lipids, proteins) can predict time to insulin requirement using different machine learning approaches (lasso, ridge, GRridge, random forest). Clinical variables included age, sex, HbA1c, HDL-cholesterol and C-peptide. Models were run with unpenalised clinical variables (i.e. always included in the model without weights) or penalised clinical variables, or without clinical variables. Model development was performed in one cohort and the model was applied in a second cohort. Model performance was evaluated using Harrel's C statistic. RESULTS: Of the 585 individuals from the Hoorn Diabetes Care System (DCS) cohort, 69 required insulin during follow-up (1.0-11.4 years); of the 571 individuals in the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) cohort, 175 required insulin during follow-up (0.3-11.8 years). Overall, the clinical variables and proteins were selected in the different models most often, followed by the metabolites. The most frequently selected clinical variables were HbA1c (18 of the 36 models, 50%), age (15 models, 41.2%) and C-peptide (15 models, 41.2%). Base models (age, sex, BMI, HbA1c) including only clinical variables performed moderately in both the DCS discovery cohort (C statistic 0.71 [95% CI 0.64, 0.79]) and the GoDARTS replication cohort (C 0.71 [95% CI 0.69, 0.75]). A more extensive model including HDL-cholesterol and C-peptide performed better in both cohorts (DCS, C 0.74 [95% CI 0.67, 0.81]; GoDARTS, C 0.73 [95% CI 0.69, 0.77]). Two proteins, lactadherin and proto-oncogene tyrosine-protein kinase receptor, were most consistently selected and slightly improved model performance. CONCLUSIONS/INTERPRETATION: Using machine learning approaches, we show that insulin requirement risk can be modestly well predicted by predominantly clinical variables. Inclusion of molecular markers improves the prognostic performance beyond that of clinical variables by up to 5%. Such prognostic models could be useful for identifying people with diabetes at high risk of progressing quickly to treatment intensification. DATA AVAILABILITY: Summary statistics of lipidomic, proteomic and metabolomic data are available from a Shiny dashboard at https://rhapdata-app.vital-it.ch .


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Estudios Prospectivos , Péptido C , Proteómica , Insulina/uso terapéutico , Biomarcadores , Aprendizaje Automático , Colesterol
15.
Diabetologia ; 67(6): 1079-1094, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38512414

RESUMEN

AIMS/HYPOTHESIS: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility, which we explore here by focusing on the imprinted gene Nnat (encoding neuronatin [NNAT]), which is required for normal insulin synthesis and secretion. METHODS: Single-cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing enhanced GFP under the control of the Nnat enhancer/promoter regions were generated for FACS of beta cells and downstream analysis of CpG methylation by bisulphite sequencing and RNA-seq, respectively. Animals deleted for the de novo methyltransferase DNA methyltransferase 3 alpha (DNMT3A) from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 AM and Cal-590 AM. Insulin secretion was measured using homogeneous time-resolved fluorescence imaging. RESULTS: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic datasets demonstrated the early establishment of Nnat-positive and -negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a subpopulation specialised for insulin production, and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialisation. CONCLUSIONS/INTERPRETATION: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes. DATA AVAILABILITY: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048465.


Asunto(s)
Islas de CpG , Metilación de ADN , Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Animales , Ratones , Islas de CpG/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Transgénicos , ADN Metiltransferasa 3A/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina/fisiología
16.
Hum Mol Genet ; 31(R1): R37-R46, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35994032

RESUMEN

The exponential accumulation of DNA sequencing data has opened new avenues for discovering the causative roles of single-nucleotide polymorphisms (SNPs) in neurological diseases. The opportunities emerging from this are staggering, yet only as good as our abilities to glean insights from this surplus of information. Whereas computational biology continues to improve with respect to predictions and molecular modeling, the differences between in silico and in vivo analysis remain substantial. Invertebrate in vivo model systems represent technically advanced, experimentally mature, high-throughput, efficient and cost-effective resources for investigating a disease. With a decades-long track record of enabling investigators to discern function from DNA, fly (Drosophila) and worm (Caenorhabditis elegans) models have never been better poised to serve as living engines of discovery. Both of these animals have already proven useful in the classification of genetic variants as either pathogenic or benign across a range of neurodevelopmental and neurodegenerative disorders-including autism spectrum disorders, ciliopathies, amyotrophic lateral sclerosis, Alzheimer's and Parkinson's disease. Pathogenic SNPs typically display distinctive phenotypes in functional assays when compared with null alleles and frequently lead to protein products with gain-of-function or partial loss-of-function properties that contribute to neurological disease pathogenesis. The utility of invertebrates is logically limited by overt differences in anatomical and physiological characteristics, and also the evolutionary distance in genome structure. Nevertheless, functional annotation of disease-SNPs using invertebrate models can expedite the process of assigning cellular and organismal consequences to mutations, ascertain insights into mechanisms of action, and accelerate therapeutic target discovery and drug development for neurological conditions.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Humanos , Caenorhabditis elegans/genética , Drosophila/genética , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedad de Parkinson/genética , Modelos Animales de Enfermedad , Polimorfismo de Nucleótido Simple
17.
Hum Mol Genet ; 31(21): 3729-3740, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35652444

RESUMEN

Rabenosyn (RBSN) is a conserved endosomal protein necessary for regulating internalized cargo. Here, we present clinical, genetic, cellular and biochemical evidence that two distinct RBSN missense variants are responsible for a novel Mendelian disorder consisting of progressive muscle weakness, facial dysmorphisms, ophthalmoplegia and intellectual disability. Using exome sequencing, we identified recessively acting germline alleles p.Arg180Gly and p.Gly183Arg, which are both situated in the FYVE domain of RBSN. We find that these variants abrogate binding to its cognate substrate phosphatidylinositol 3-phosphate (PI3P) and thus prevent its translocation to early endosomes. Although the endosomal recycling pathway was unaltered, mutant p.Gly183Arg patient fibroblasts show accumulation of cargo tagged for lysosomal degradation. Our results suggest that these variants are separation-of-function alleles, which cause a delay in endosomal maturation without affecting cargo recycling. We conclude that distinct germline mutations in RBSN cause non-overlapping phenotypes with specific and discrete endolysosomal cellular defects.


Asunto(s)
Endosomas , Discapacidad Intelectual , Proteínas de Transporte Vesicular , Humanos , Alelos , Endosomas/genética , Endosomas/metabolismo , Discapacidad Intelectual/genética , Lisosomas/genética , Lisosomas/metabolismo , Mutación , Transporte de Proteínas/genética , Proteínas de Transporte Vesicular/genética
18.
Genet Med ; 26(1): 100967, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37638500

RESUMEN

PURPOSE: The genetic etiology of amyotrophic lateral sclerosis (ALS) includes few rare, large-effect variants and potentially many common, small-effect variants per case. The genetic risk liability for ALS might require a threshold comprised of a certain amount of variants. Here, we tested the degree to which risk for ALS was affected by rare variants in ALS genes, polygenic risk score, or both. METHODS: 335 ALS cases and 356 controls from Québec, Canada were concurrently tested by microarray genotyping and targeted sequencing of ALS genes known at the time of study inception. ALS genome-wide association studies summary statistics were used to estimate an ALS polygenic risk score (PRS). Cases and controls were subdivided into rare-variant heterozygotes and non-heterozygotes. RESULTS: Risk for ALS was significantly associated with PRS and rare variants independently in a logistic regression model. Although ALS PRS predicted a small amount of ALS risk overall, the effect was most pronounced between ALS cases and controls that were not heterozygous for a rare variant in the ALS genes surveyed. CONCLUSION: Both PRS and rare variants in ALS genes impact risk for ALS. PRS for ALS is most informative when rare variants are not observed in ALS genes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Estudios de Asociación Genética , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Estudio de Asociación del Genoma Completo , Canadá , Genoma , Predisposición Genética a la Enfermedad
19.
Acta Neuropathol ; 148(1): 14, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088078

RESUMEN

Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative spinocerebellar ataxia caused by a polyglutamine-coding CAG repeat expansion in the ATXN3 gene. While the CAG length correlates negatively with the age at onset, it accounts for approximately 50% of its variability only. Despite larger efforts in identifying contributing genetic factors, candidate genes with a robust and plausible impact on the molecular pathogenesis of MJD are scarce. Therefore, we analysed missense single nucleotide polymorphism variants in the PRKN gene encoding the Parkinson's disease-associated E3 ubiquitin ligase parkin, which is a well-described interaction partner of the MJD protein ataxin-3, a deubiquitinase. By performing a correlation analysis in the to-date largest MJD cohort of more than 900 individuals, we identified the V380L variant as a relevant factor, decreasing the age at onset by 3 years in homozygous carriers. Functional analysis in an MJD cell model demonstrated that parkin V380L did not modulate soluble or aggregate levels of ataxin-3 but reduced the interaction of the two proteins. Moreover, the presence of parkin V380L interfered with the execution of mitophagy-the autophagic removal of surplus or damaged mitochondria-thereby compromising cell viability. In summary, we identified the V380L variant in parkin as a genetic modifier of MJD, with negative repercussions on its molecular pathogenesis and disease age at onset.


Asunto(s)
Enfermedad de Machado-Joseph , Mitofagia , Ubiquitina-Proteína Ligasas , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Humanos , Ubiquitina-Proteína Ligasas/genética , Mitofagia/genética , Mitofagia/fisiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Polimorfismo de Nucleótido Simple , Ataxina-3/genética , Edad de Inicio , Proteínas Represoras
20.
Mov Disord ; 39(2): 400-410, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38314870

RESUMEN

BACKGROUND: Congenital mirror movements (CMM) is a rare neurodevelopmental disorder characterized by involuntary movements from one side of the body that mirror voluntary movements on the opposite side. To date, five genes have been associated with CMM, namely DCC, RAD51, NTN1, ARHGEF7, and DNAL4. OBJECTIVE: The aim of this study is to characterize the genetic landscape of CMM in a large group of 80 affected individuals. METHODS: We screened 80 individuals with CMM from 43 families for pathogenic variants in CMM genes. In large CMM families, we tested for presence of pathogenic variants in multiple affected and unaffected individuals. In addition, we evaluated the impact of three missense DCC variants on binding between DCC and Netrin-1 in vitro. RESULTS: Causal pathogenic/likely pathogenic variants were found in 35% of probands overall, and 70% with familial CMM. The most common causal gene was DCC, responsible for 28% of CMM probands and 80% of solved cases. RAD51, NTN1, and ARHGEF7 were rare causes of CMM, responsible for 2% each. Penetrance of CMM in DCC pathogenic variant carriers was 68% and higher in males than females (74% vs. 54%). The three tested missense variants (p.Ile164Thr; p.Asn176Ser; and p.Arg1343His) bind Netrin-1 similarly to wild type DCC. CONCLUSIONS: A genetic etiology can be identified in one third of CMM individuals, with DCC being the most common gene involved. Two thirds of CMM individuals were unsolved, highlighting that CMM is genetically heterogeneous and other CMM genes are yet to be discovered. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Discinesias , Trastornos del Movimiento , Masculino , Femenino , Humanos , Netrina-1/genética , Receptor DCC/genética , Trastornos del Movimiento/genética , Mutación Missense/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA