RESUMEN
Halomicronema hongdechloris, the first cyanobacterium reported to produce the red-shifted chlorophyll f (Chl f) upon acclimation to far-red light, demonstrates remarkable adaptability to diverse light conditions. The photosystem II (PS II) of this organism undergoes reversible changes in its Chl f content, ranging from practically zero under white-light culture conditions to a Chl f: Chl a ratio of up to 1:8 when exposed to far-red light (FRL) of 720-730 nm for several days. Our ps time- and wavelength-resolved fluorescence data obtained after excitation of living H. hongdechloris cells indicate that the Soret band of a far-red (FR) chlorophyll involved in charge separation absorbs around 470 nm. At 10 K, the fluorescence decay at 715-720 nm is still fast with a time constant of 165 ps indicating an efficient electron tunneling process. There is efficient excitation energy transfer (EET) from 715-720 nm to 745 nm with the latter resulting from FR Chl f, which mainly functions as light-harvesting pigment upon adaptation to FRL. From there, excitation energy reaches the primary donor in the reaction center of PS II with an energetic uphill EET mechanism inducing charge transfer. The fluorescence data are well explained with a secondary donor PD1 represented by a red-shifted Chl a molecule with characteristic fluorescence around 715 nm and a more red-shifted FR Chl f with fluorescence around 725 nm as primary donor at the ChlD1 or PD2 position.
Asunto(s)
Clorofila , Cianobacterias , Electrones , Fotoquímica , Clorofila/química , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Transferencia de EnergíaRESUMEN
The phototrophic cyanobacterium Halomicronema hongdechloris shows far-red light-induced accumulation of chlorophyll (Chl) f, but the involvement of the pigment in photosynthetic energy harvesting by photosystem (PS) II is controversially discussed. While H. hongdechloris contains negligible amounts of Chl f in white-light culture conditions, the ratio of Chl f to Chl a is reversibly changed up to 1:8 under illumination with far-red light (720-730 nm). We performed UV-Vis absorption spectroscopy, time-integrated and time-resolved fluorescence spectroscopy for the calculation of decay-associated spectra (DAS) to determine excitation energy transfer (EET) processes between photosynthetic pigments in intact H. hongdechloris filaments. In cells grown under white light, highly efficient EET occurs from phycobilisomes (PBSs) to Chl a with an apparent time constant of about 100 ps. Charge separation occurs with a typical apparent time constant of 200-300 ps from Chl a. After 3-4 days of growth under far-red light, robust Chl f content was observed in H. hongdechloris and EET from PBSs reached Chl f efficiently within 200 ps. It is proposed based on mathematical modeling by rate equation systems for EET between the PBSs and PSII and subsequent electron transfer (ET) that charge separation occurs from Chl a and excitation energy is funneled from Chl f to Chl a via an energetically uphill EET driven by entropy, which is effective because the number of Chl a molecules coupled to Chl f is at least eight- to tenfold larger than the corresponding number of Chl f molecules. The long lifetime of Chl f molecules in contact to a tenfold larger pool of Chl a molecules allows Chl f to act as an intermediate energy storage level, from which the Gibbs free energy difference between Chl f and Chl a can be overcome by taking advantage from the favorable ratio of degeneracy coefficients, which formally represents a significant entropy gain in the Eyring formulation of the Arrhenius law. Direct evidence for energetically uphill EET and charge separation in PSII upon excitation of Chl f via anti-Stokes fluorescence in far-red light-adapted H. hongdechloris cells was obtained: Excitation by 720 nm laser light resulted in robust Chl a fluorescence at 680 nm that was distinctly temperature-dependent and, notably, increased upon DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) treatment in far-red light-adapted cells. Thus, rather than serving as an excitation energy trap, Chl f in far-red light-adapted H. hongdechloris cells is directly contributing to oxygenic photosynthesis at PSII.