Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555720

RESUMEN

Establishing the rapid and accurate diagnosis of sepsis is a key component to the improvement of clinical outcomes. The ability of analytical platforms to rapidly detect pathogen-associated molecular patterns (PAMP) in blood could provide a powerful host-independent biomarker of sepsis. A novel concept was investigated based on the idea that a pre-bound and fluorescent ligand could be released from lectins in contact with high-affinity ligands (such as PAMPs). To create fluorescent ligands with precise avidity, the kinetically followed TEMPO oxidation of yeast mannan and carbodiimide coupling were used. The chemical modifications led to decreases in avidity between mannan and human collectins, such as the mannan-binding lectin (MBL) and human surfactant protein D (SP-D), but not in porcine SP-D. Despite this effect, these fluorescent derivatives were captured by human lectins using highly concentrated solutions. The resulting fluorescent beads were exposed to different solutions, and the results showed that displacements occur in contact with higher affinity ligands, proving that two-stage competition processes can occur in collectin carbohydrate recognition mechanisms. Moreover, the fluorescence loss depends on the discrepancy between the respective avidities of the recognized ligand and the fluorescent mannan. Chemically modulated fluorescent ligands associated with a diversity of collectins may lead to the creation of diagnostic tools suitable for multiplex array assays and the identification of high-avidity ligands.


Asunto(s)
Colectinas , Sepsis , Humanos , Animales , Porcinos , Proteína D Asociada a Surfactante Pulmonar/química , Mananos/metabolismo , Ligandos , Lectinas/metabolismo
2.
Appl Microbiol Biotechnol ; 105(5): 1953-1964, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33576886

RESUMEN

Therapeutic options to treat invasive fungal infections are still limited. This makes the development of novel antifungal agents highly desirable. Naturally occurring antifungal peptides represent valid candidates, since they are not harmful for human cells and are endowed with a wide range of activities and their mechanism of action is different from that of conventional antifungal drugs. Here, we characterized for the first time the antifungal properties of novel peptides identified in human apolipoprotein B. ApoB-derived peptides, here named r(P)ApoBLPro, r(P)ApoBLAla and r(P)ApoBSPro, were found to have significant fungicidal activity towards Candida albicans (C. albicans) cells. Peptides were also found to be able to slow down metabolic activity of Aspergillus niger (A. niger) spores. In addition, experiments were carried out to clarify the mechanism of fungicidal activity of ApoB-derived peptides. Peptides immediately interacted with C. albicans cell surfaces, as indicated by fluorescence live cell imaging analyses, and induced severe membrane damage, as indicated by propidium iodide uptake induced upon treatment of C. albicans cells with ApoB-derived peptides. ApoB-derived peptides were also tested on A. niger swollen spores, initial hyphae and branched mycelium. The effects of peptides were found to be more severe on swollen spores and initial hyphae compared to mycelium. Fluorescence live cell imaging analyses confirmed peptide internalization into swollen spores with a consequent accumulation into hyphae. Altogether, these findings open interesting perspectives to the application of ApoB-derived peptides as effective antifungal agents. KEY POINTS: Human cryptides identified in ApoB are effective antifungal agents. ApoB-derived cryptides exert fungicidal effects towards C. albicans cells. ApoB-derived cryptides affect different stages of growth of A. niger. Graphical abstract.


Asunto(s)
Antifúngicos , Péptidos Catiónicos Antimicrobianos , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Apolipoproteínas B , Candida albicans , Humanos , Hifa , Pruebas de Sensibilidad Microbiana
3.
Vet Res ; 51(1): 122, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32972448

RESUMEN

Cathelicidins (CATHs) play an important role in the innate immune response against microbial infections. Among the four chicken cathelicidins, CATH-B1 is studied the least. In this study, the effect of CATH-B1 on the macrophage response towards avian pathogenic E. coli (APEC) and bacterial ligands was investigated. Our results show that APEC induced CATH-B1 gene expression in both a chicken macrophage cell line (HD11 cells) and primary macrophages, while expression of the other three CATHs was virtually unaffected. While the antimicrobial activity of CATH-B1 is very low under cell culture conditions, it enhanced bacterial phagocytosis by macrophages. Interestingly, CATH-B1 downregulated APEC-induced gene expression of pro-inflammatory cytokines (IFN-ß, IL-1ß, IL-6 and IL-8) in primary macrophages. In addition, CATH-B1 pre-incubated macrophages showed a significantly higher gene expression of IL-10 after APEC challenge, indicating an overall anti-inflammatory profile for CATH-B1. Using isothermal titration calorimetry (ITC), CATH-B1 was shown to bind LPS. This suggests that CATH-B1 reduces toll like receptor (TLR) 4 dependent activation by APEC which may partly explain the decreased production of pro-inflammatory cytokines by macrophages. On the contrary, direct binding of CATH-B1 to ODN-2006 enhanced the TLR21 dependent activation of macrophages as measured by nitric oxide production. In conclusion, our results show for the first time that CATH-B1 has several immunomodulatory activities and thereby could be an important factor in the chicken immune response.


Asunto(s)
Proteínas Aviares/inmunología , Proteínas Bacterianas/metabolismo , Catelicidinas/inmunología , Pollos/inmunología , Inmunomodulación/genética , Macrófagos/inmunología , Animales , Proteínas Aviares/genética , Catelicidinas/genética , Regulación hacia Abajo , Escherichia coli/fisiología , Ligandos
4.
Med Mycol ; 58(8): 1073-1084, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32236485

RESUMEN

Fungal infections in humans are increasing worldwide and are currently mostly treated with a relative limited set of antifungals. Resistance to antifungals is increasing, for example, in Aspergillus fumigatus and Candida auris, and expected to increase for many medically relevant fungal species in the near future. We have developed and patented a set of cathelicidin-inspired antimicrobial peptides termed 'PepBiotics'. These peptides were initially selected for their bactericidal activity against clinically relevant Pseudomonas aeruginosa and Staphylococcus aureus isolates derived from patients with cystic fibrosis and are active against a wide range of bacteria (ESKAPE pathogens). We now report results from studies that were designed to investigate the antifungal activity of PepBiotics against a set of medically relevant species encompassing species of Aspergillus, Candida, Cryptococcus, Fusarium, Malassezia, and Talaromyces. We characterized a subset of PepBiotics and show that these peptides strongly affected metabolic activity and/or growth of a set of medically relevant fungal species, including azole-resistant A. fumigatus isolates. PepBiotics showed a strong inhibitory activity against a large variety of filamentous fungi and yeasts species at low concentrations (≤1 µM) and were fungicidal for at least a subset of these fungal species. Interestingly, the concentration of PepBiotics required to interfere with growth or metabolic activity varied between different fungal species or even between isolates of the same fungal species. This study shows that PepBiotics display strong potential for use as novel antifungal compounds to fight a large variety of clinically relevant fungal species.


Asunto(s)
Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Secuencia de Aminoácidos , Animales , Antifúngicos/química , Péptidos Catiónicos Antimicrobianos/química , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Farmacorresistencia Fúngica/efectos de los fármacos , Hongos/clasificación , Hongos/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Micosis/microbiología , Especificidad de la Especie , Catelicidinas
5.
J Biol Chem ; 293(27): 10646-10662, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29769321

RESUMEN

Innate immunity is critical in the early containment of influenza A virus (IAV) infection, and surfactant protein D (SP-D) plays a crucial role in the pulmonary defense against IAV. In pigs, which are important intermediate hosts during the generation of pandemic IAVs, SP-D uses its unique carbohydrate recognition domain (CRD) to interact with IAV. An N-linked CRD glycosylation provides interactions with the sialic acid-binding site of IAV, and a tripeptide loop at the lectin-binding site facilitates enhanced interactions with IAV glycans. Here, to investigate both mechanisms of IAV neutralization in greater detail, we produced an N-glycosylated neck-CRD fragment of porcine SP-D (RpNCRD) in HEK293 cells. X-ray crystallography disclosed that the N-glycan did not alter the CRD backbone structure, including the lectin site conformation, but revealed a potential second nonlectin-binding site for glycans. IAV hemagglutination inhibition, IAV aggregation, and neutralization of IAV infection studies showed that RpNCRD, unlike the human analogue RhNCRD, exhibits potent neutralizing activity against pandemic A/Aichi/68 (H3N2), enabled by both porcine-specific structural features of its CRD. MS analysis revealed an N-glycan site-occupancy of >98% at Asn-303 of RpNCRD with complex-type, heterogeneously branched and predominantly α(2,3)-sialylated oligosaccharides. Glycan-binding array data characterized both RpNCRD and RhNCRD as mannose-type lectins. RpNCRD also bound LewisY structures, whereas RhNCRD bound polylactosamine-containing glycans. The presence of the N-glycan in the CRD increases the glycan-binding specificity of RpNCRD. These insights increase our understanding of porcine-specific innate defense against pandemic IAV and may inform the design of recombinant SP-D-based antiviral drugs.


Asunto(s)
Inmunidad Innata/inmunología , Virus de la Influenza A/inmunología , Lectinas/metabolismo , Infecciones por Orthomyxoviridae/prevención & control , Polisacáridos/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Ácidos Siálicos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Conformación de Carbohidratos , Glicosilación , Pruebas de Inhibición de Hemaglutinación , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Polisacáridos/química , Proteína D Asociada a Surfactante Pulmonar/química , Proteína D Asociada a Surfactante Pulmonar/genética , Homología de Secuencia , Porcinos
6.
J Immunol ; 199(4): 1418-1428, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28710255

RESUMEN

Activation of the immune system needs to be tightly regulated to provide protection against infections and, at the same time, to prevent excessive inflammation to limit collateral damage to the host. This tight regulation includes regulating the activation of TLRs, which are key players in the recognition of invading microbes. A group of short cationic antimicrobial peptides, called cathelicidins, have previously been shown to modulate TLR activation by synthetic or purified TLR ligands and may play an important role in the regulation of inflammation during infections. However, little is known about how these cathelicidins affect TLR activation in the context of complete and viable bacteria. In this article, we show that chicken cathelicidin-2 kills Escherichia coli in an immunogenically silent fashion. Our results show that chicken cathelicidin-2 kills E. coli by permeabilizing the bacterial inner membrane and subsequently binds the outer membrane-derived lipoproteins and LPS to inhibit TLR2 and TLR4 activation, respectively. In addition, other cathelicidins, including human, mouse, pig, and dog cathelicidins, which lack antimicrobial activity under cell culture conditions, only inhibit macrophage activation by nonviable E. coli In total, this study shows that cathelicidins do not affect immune activation by viable bacteria and only inhibit inflammation when bacterial viability is lost. Therefore, cathelicidins provide a novel mechanism by which the immune system can discriminate between viable and nonviable Gram-negative bacteria to tune the immune response, thereby limiting collateral damage to the host and the risk for sepsis.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/fisiología , Proteínas Sanguíneas/fisiología , Escherichia coli/inmunología , Bacterias Gramnegativas/inmunología , Activación de Macrófagos , Viabilidad Microbiana , Precursores de Proteínas/fisiología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/inmunología , Animales , Proteínas Sanguíneas/aislamiento & purificación , Proteínas Sanguíneas/metabolismo , Catelicidinas/fisiología , Pollos/inmunología , Perros , Bacterias Gramnegativas/fisiología , Humanos , Inflamación/inmunología , Ratones , Precursores de Proteínas/aislamiento & purificación , Precursores de Proteínas/metabolismo , Porcinos/inmunología
7.
Vet Res ; 49(1): 68, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30060758

RESUMEN

Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described.


Asunto(s)
Catelicidinas/uso terapéutico , Defensinas/uso terapéutico , Inmunidad Innata , Inmunoglobulinas/uso terapéutico , Ganado/inmunología , Aves de Corral/inmunología , Inmunidad Adaptativa , Crianza de Animales Domésticos , Animales , Antibacterianos/uso terapéutico
8.
Nature ; 487(7405): 109-13, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22763554

RESUMEN

Cystic fibrosis (CF) is a life-shortening disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although bacterial lung infection and the resulting inflammation cause most of the morbidity and mortality, how the loss of CFTR function first disrupts airway host defence has remained uncertain. To investigate the abnormalities that impair elimination when a bacterium lands on the pristine surface of a newborn CF airway, we interrogated the viability of individual bacteria immobilized on solid grids and placed onto the airway surface. As a model, we studied CF pigs, which spontaneously develop hallmark features of CF lung disease. At birth, their lungs lack infection and inflammation, but have a reduced ability to eradicate bacteria. Here we show that in newborn wild-type pigs, the thin layer of airway surface liquid (ASL) rapidly kills bacteria in vivo, when removed from the lung and in primary epithelial cultures. Lack of CFTR reduces bacterial killing. We found that the ASL pH was more acidic in CF pigs, and reducing pH inhibited the antimicrobial activity of ASL. Reducing ASL pH diminished bacterial killing in wild-type pigs, and, conversely, increasing ASL pH rescued killing in CF pigs. These results directly link the initial host defence defect to the loss of CFTR, an anion channel that facilitates HCO(3)(-) transport. Without CFTR, airway epithelial HCO(3)(-) secretion is defective, the ASL pH falls and inhibits antimicrobial function, and thereby impairs the killing of bacteria that enter the newborn lung. These findings suggest that increasing ASL pH might prevent the initial infection in patients with CF, and that assaying bacterial killing could report on the benefit of therapeutic interventions.


Asunto(s)
Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Pulmón/metabolismo , Pulmón/microbiología , Viabilidad Microbiana , Sistema Respiratorio/metabolismo , Animales , Animales Recién Nacidos , Antiinfecciosos/farmacología , Bicarbonatos/metabolismo , Líquidos Corporales/efectos de los fármacos , Líquidos Corporales/metabolismo , Fibrosis Quística/patología , Fibrosis Quística/terapia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Femenino , Concentración de Iones de Hidrógeno/efectos de los fármacos , Transporte Iónico , Pulmón/patología , Masculino , Viabilidad Microbiana/efectos de los fármacos , Sus scrofa/microbiología
9.
Am J Respir Cell Mol Biol ; 56(6): 749-761, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28231019

RESUMEN

Vitamin D is a regulator of host defense against infections and induces expression of the antimicrobial peptide hCAP18/LL-37. Vitamin D deficiency is associated with chronic inflammatory lung diseases and respiratory infections. However, it is incompletely understood if and how (chronic) airway inflammation affects vitamin D metabolism and action. We hypothesized that long-term exposure of primary bronchial epithelial cells to proinflammatory cytokines alters their vitamin D metabolism, antibacterial activity, and expression of hCAP18/LL-37. To investigate this, primary bronchial epithelial cells were differentiated at the air-liquid interface for 14 days in the presence of the proinflammatory cytokines, TNF-α and IL-1ß (TNF-α/IL-1ß), and subsequently exposed to vitamin D (inactive 25(OH)D3 and active 1,25(OH)2D3). Expression of hCAP18/LL-37, vitamin D receptor, and enzymes involved in vitamin D metabolism (CYP24A1 and CYP27B1) was determined using quantitative PCR, Western blot, and immunofluorescence staining. Furthermore, vitamin D-mediated antibacterial activity was assessed using nontypeable Haemophilus influenzae. We found that TNF-α/IL-1ß treatment reduced vitamin D-induced expression of hCAP18/LL-37 and killing of nontypeable H. influenzae. In addition, CYP24A1 (a vitamin D-degrading enzyme) was increased by TNF-α/IL-1ß, whereas CYP27B1 (that converts 25(OH)D3 to its active form) and vitamin D receptor expression remained unaffected. Furthermore, we have demonstrated that the TNF-α/IL-1ß-mediated induction of CYP24A1 was, at least in part, mediated by the transcription factor specific protein 1, and the epidermal growth factor receptor-mitogen-activated protein kinase pathway. These findings indicate that TNF-α/IL-1ß decreases vitamin D-mediated antibacterial activity and hCAP18/LL-37 expression via induction of CYP24A1 and suggest that chronic inflammation impairs protective responses induced by vitamin D.


Asunto(s)
Bronquios/citología , Citocinas/metabolismo , Células Epiteliales/inmunología , Mediadores de Inflamación/metabolismo , Vitamina D/farmacología , Lesión Pulmonar Aguda/patología , Péptidos Catiónicos Antimicrobianos , Calcifediol/farmacología , Catelicidinas/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Haemophilus influenzae/efectos de los fármacos , Humanos , Interleucina-17/farmacología , Interleucina-1beta/farmacología , Viabilidad Microbiana/efectos de los fármacos , Mucinas/metabolismo , Factor de Transcripción Sp1/metabolismo , Factores de Tiempo , Factor de Necrosis Tumoral alfa/farmacología , Vitamina D3 24-Hidroxilasa/metabolismo
10.
Infect Immun ; 85(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28947647

RESUMEN

The development of antibiotic resistance by Pseudomonas aeruginosa is a major concern in the treatment of bacterial pneumonia. In the search for novel anti-infective therapies, the chicken-derived peptide cathelicidin-2 (CATH-2) has emerged as a potential candidate, with strong broad-spectrum antimicrobial activity and the ability to limit inflammation by inhibiting Toll-like receptor 2 (TLR2) and TLR4 activation. However, as it is unknown how CATH-2 affects inflammation in vivo, we investigated how CATH-2-mediated killing of P. aeruginosa affects lung inflammation in a murine model. First, murine macrophages were used to determine whether CATH-2-mediated killing of P. aeruginosa reduced proinflammatory cytokine production in vitro Next, a murine lung model was used to analyze how CATH-2-mediated killing of P. aeruginosa affects neutrophil and macrophage recruitment as well as cytokine/chemokine production in the lung. Our results show that CATH-2 kills P. aeruginosa in an immunogenically silent manner both in vitro and in vivo Treatment with CATH-2-killed P. aeruginosa showed reduced neutrophil recruitment to the lung as well as inhibition of cytokine and chemokine production, compared to treatment with heat- or gentamicin-killed bacteria. Together, these results show the potential for CATH-2 as a dual-activity antibiotic in bacterial pneumonia, which can both kill P. aeruginosa and prevent excessive inflammation.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/inmunología , Inflamación/prevención & control , Pulmón/microbiología , Neumonía Bacteriana/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Línea Celular , Quimiocinas/inmunología , Pollos/inmunología , Citocinas/inmunología , Modelos Animales de Enfermedad , Inmunidad Innata , Inflamación/inmunología , Pulmón/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila , Neumonía Bacteriana/prevención & control , Infecciones por Pseudomonas/veterinaria
11.
J Immunol ; 195(8): 3970-7, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26378074

RESUMEN

Cathelicidins are essential in the protection against invading pathogens through both their direct antimicrobial activity and their immunomodulatory functions. Although cathelicidins are known to modulate activation by several TLR ligands, little is known about their influence on DNA-induced macrophage activation. In this study, we explored the effects of cathelicidins on DNA-induced activation of chicken macrophages and elucidated the intracellular processes underlying these effects. Our results show that chicken cathelicidin (CATH)-2 strongly enhances DNA-induced activation of both chicken and mammalian macrophages because of enhanced endocytosis of DNA-CATH-2 complexes. After endocytosis, DNA is liberated from the complex because of proteolytic breakdown of CATH-2, after which TLR21 is activated. This leads to increased cytokine expression and NO production. Through the interaction with DNA, CATH-2 can play an important role in modulating the immune response at sites of infection. These observations underline the importance of cathelicidins in sensing bacterial products and regulating immune responses.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/inmunología , Proteínas Aviares/inmunología , ADN/inmunología , Endosomas/inmunología , Activación de Macrófagos , Macrófagos/inmunología , Proteolisis , Animales , Línea Celular , Pollos , Endocitosis/inmunología , Catelicidinas
12.
BMC Genomics ; 16: 277, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25888366

RESUMEN

BACKGROUND: Genes and signalling pathways involved in pluripotency have been studied extensively in mouse and human pre-implantation embryos and embryonic stem (ES) cells. The unsuccessful attempts to generate ES cell lines from other species including cattle suggests that other genes and pathways are involved in maintaining pluripotency in these species. To investigate which genes are involved in bovine pluripotency, expression profiles were generated from morula, blastocyst, trophectoderm and inner cell mass (ICM) samples using microarray analysis. As MAPK inhibition can increase the NANOG/GATA6 ratio in the inner cell mass, additionally blastocysts were cultured in the presence of a MAPK inhibitor and changes in gene expression in the inner cell mass were analysed. RESULTS: Between morula and blastocyst 3,774 genes were differentially expressed and the largest differences were found in blastocyst up-regulated genes. Gene ontology (GO) analysis shows lipid metabolic process as the term most enriched with genes expressed at higher levels in blastocysts. Genes with higher expression levels in morulae were enriched in the RNA processing GO term. Of the 497 differentially expressed genes comparing ICM and TE, the expression of NANOG, SOX2 and POU5F1 was increased in the ICM confirming their evolutionary preserved role in pluripotency. Several genes implicated to be involved in differentiation or fate determination were also expressed at higher levels in the ICM. Genes expressed at higher levels in the ICM were enriched in the RNA splicing and regulation of gene expression GO term. Although NANOG expression was elevated upon MAPK inhibition, SOX2 and POU5F1 expression showed little increase. Expression of other genes in the MAPK pathway including DUSP4 and SPRY4, or influenced by MAPK inhibition such as IFNT, was down-regulated. CONCLUSION: The data obtained from the microarray studies provide further insight in gene expression during bovine embryonic development. They show an expression profile in pluripotent cells that indicates a pluripotent, epiblast-like state. The inability to culture ICM cells as stem cells in the presence of an inhibitor of MAPK activity together with the reported data indicates that MAPK inhibition alone is not sufficient to maintain a pluripotent character in bovine cells.


Asunto(s)
Masa Celular Interna del Blastocisto/metabolismo , Bovinos/embriología , Regulación del Desarrollo de la Expresión Génica , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mórula/metabolismo , ARN Mensajero/metabolismo , Animales , Benzamidas/farmacología , Masa Celular Interna del Blastocisto/efectos de los fármacos , Bovinos/genética , Bovinos/metabolismo , Células Cultivadas , Difenilamina/análogos & derivados , Difenilamina/farmacología , Técnicas de Cultivo de Embriones , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Mórula/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
13.
Antimicrob Agents Chemother ; 59(6): 3075-83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25753641

RESUMEN

Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología , Surfactantes Pulmonares/farmacología , Surfactantes Pulmonares/uso terapéutico , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Bovinos , Masculino , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
14.
Antimicrob Agents Chemother ; 58(4): 2240-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24492359

RESUMEN

Antifungal mechanisms of action of two cathelicidins, chicken CATH-2 and human LL-37, were studied and compared with the mode of action of the salivary peptide histatin 5 (Hst5). Candida albicans was used as a model organism for fungal pathogens. Analysis by live-cell imaging showed that the peptides kill C. albicans rapidly. CATH-2 is the most active peptide and kills C. albicans within 5 min. Both cathelicidins induce cell membrane permeabilization and simultaneous vacuolar expansion. Minimal fungicidal concentrations (MFC) are in the same order of magnitude for all three peptides, but the mechanisms of antifungal activity are very different. The activity of cathelicidins is independent of the energy status of the fungal cell, unlike Hst5 activity. Live-cell imaging using fluorescently labeled peptides showed that both CATH-2 and LL-37 quickly localize to the C. albicans cell membrane, while Hst5 was mainly directed to the fungal vacuole. Small amounts of cathelicidins internalize at sub-MFCs, suggesting that intracellular activities of the peptide could contribute to the antifungal activity. Analysis by flow cytometry indicated that CATH-2 significantly decreases C. albicans cell size. Finally, electron microscopy showed that CATH-2 affects the integrity of the cell membrane and nuclear envelope. It is concluded that the general mechanisms of action of both cathelicidins are partially similar (but very different from that of Hst5). CATH-2 has unique features and possesses antifungal potential superior to that of LL-37.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Catelicidinas/farmacología , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica
15.
J Biol Chem ; 287(32): 26666-77, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22685299

RESUMEN

Pigs can act as intermediate hosts by which reassorted influenza A virus (IAV) strains can be transmitted to humans and cause pandemic influenza outbreaks. The innate host defense component surfactant protein D (SP-D) interacts with glycans on the hemagglutinin of IAV and contributes to protection against IAV infection in mammals. This study shows that a recombinant trimeric neck lectin fragment derived from porcine SP-D (pSP-D) exhibits profound inhibitory activity against IAV, in contrast to comparable fragments derived from human SP-D. Crystallographic analysis of the pSP-D fragment complexed with a viral sugar component shows that a unique tripeptide loop alters the lectin site conformation of pSP-D. Molecular dynamics simulations highlight the role of this flexible loop, which adopts a more stable conformation upon sugar binding and may facilitate binding to viral glycans through contact with distal portions of the branched mannoside. The combined data demonstrate that porcine-specific structural features of SP-D contribute significantly to its distinct anti-IAV activity. These findings could help explain why pigs serve as important reservoirs for newly emerging pathogenic IAV strains.


Asunto(s)
Antivirales/farmacología , Metabolismo de los Hidratos de Carbono , Virus de la Influenza A/efectos de los fármacos , Proteína D Asociada a Surfactante Pulmonar/farmacología , Animales , Antivirales/química , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Cristalización , Cartilla de ADN , Perros , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteína D Asociada a Surfactante Pulmonar/química , Proteína D Asociada a Surfactante Pulmonar/genética , Porcinos
16.
Res Microbiol ; 174(5): 104049, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36871896

RESUMEN

To develop a Bordetella bronchiseptica vaccine with reduced endotoxicity, we previously inactivated lpxL1, the gene encoding the enzyme that incorporates a secondary 2-hydroxy-laurate in lipid A. The mutant showed a myriad of phenotypes. Structural analysis showed the expected loss of the acyl chain but also of glucosamine (GlcN) substituents, which decorate the phosphates in lipid A. To determine which structural change causes the various phenotypes, we inactivated here lgmB, which encodes the GlcN transferase, and lpxL1 in an isogenic background and compared the phenotypes. Like the lpxL1 mutation, the lgmB mutation resulted in reduced potency to activate human TLR4 and to infect macrophages and in increased susceptibility to polymyxin B. These phenotypes are therefore related to the loss of GlcN decorations. The lpxL1 mutation had a stronger effect on hTLR4 activation and additionally resulted in reduced murine TLR4 activation, surface hydrophobicity, and biofilm formation, and in a fortified outer membrane as evidenced by increased resistance to several antimicrobials. These phenotypes, therefore, appear to be related to the loss of the acyl chain. Moreover, we determined the virulence of the mutants in the Galleria mellonella infection model and observed reduced virulence of the lpxL1 mutant but not of the lgmB mutant.


Asunto(s)
Proteínas Bacterianas , Bordetella bronchiseptica , Lípido A , Animales , Humanos , Ratones , Bordetella bronchiseptica/genética , Lípido A/química , Lípido A/genética , Macrófagos , Receptor Toll-Like 4 , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
17.
Mol Immunol ; 157: 53-69, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36996595

RESUMEN

Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.


Asunto(s)
Catelicidinas , Defensinas , Animales , Catelicidinas/genética , Defensinas/genética , Péptidos Catiónicos Antimicrobianos , Primates/genética , Aves/genética
18.
Dev Comp Immunol ; 139: 104582, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36306971

RESUMEN

The air-liquid interface of the mammalian lung is lined with pulmonary surfactants, a mixture of specific proteins and lipids that serve a dual purpose-enabling air-breathing and protection against pathogens. In mammals, surfactant proteins A (SP-A) and D (SP -D) are involved in innate defence of the lung. Birds seem to lack the SP-D gene, but possess SP-A2, an additional SP-A-like gene. Here we investigated the evolution of the SP-A and SP-D genes using computational gene prediction, homology, simulation modelling and phylogeny with published avian and other vertebrate genomes. PCR was used to confirm the identity and expression of SP-A analogues in various tissue homogenates of zebra finch and turkey. In silico analysis confirmed the absence of SP-D-like genes in all 47 published avian genomes. Zebra finch and turkey SP-A1 and SP-A2 sequences, confirmed by PCR of lung homogenates, were compared with sequenced and in silico predicted vertebrate homologs to construct a phylogenetic tree. The collagen domain of avian SP-A1, especially that of zebra finch, was dramatically shorter than that of mammalian SP-A. Amphibian and reptilian genomes also contain avian-like SP-A2 protein sequences with a collagen domain. NCBI Gnomon-predicted avian and alligator SP-A2 proteins all lacked the collagen domain completely. Both avian SP-A1 and SP-A2 sequences form separate clades, which are most closely related to their closest relatives, the alligators. The C-terminal carbohydrate recognition domain (CRD) of zebra finch SP-A1 was structurally almost identical to that of rat SP-A. In fact, the CRD of SP-A is highly conserved among all the vertebrates. Birds retained a truncated version of mammalian type SP-A1 as well as a non-collagenous C-type lectin, designated SP-A2, while losing the large collagenous SP-D lectin, reflecting their evolutionary trajectory towards a unidirectional respiratory system. In the context of zoonotic infections, how these evolutionary changes affect avian pulmonary surface protection is not clear.


Asunto(s)
Lectinas Tipo C , Proteína D Asociada a Surfactante Pulmonar , Ratas , Animales , Filogenia , Proteína D Asociada a Surfactante Pulmonar/genética , Tensoactivos , Mamíferos
19.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895956

RESUMEN

The binding of Host Defense Peptides (HDPs) to the endotoxin of Gram-negative bacteria has important unsolved aspects. For most HDPs, it is unclear if binding is part of the antibacterial mechanism or whether LPS actually provides a protective layer against HDP killing. In addition, HDP binding to LPS can block the subsequent TLR4-mediated activation of the immune system. This dual activity is important, considering that HDPs are thought of as an alternative to conventional antibiotics, which do not provide this dual activity. In this study, we systematically determine, for the first time, the influence of the O-antigen and Lipid A composition on both the antibacterial and anti-endotoxin activity of four HDPs (CATH-2, PR-39, PMAP-23, and PMAP36). The presence of the O-antigen did not affect the antibacterial activity of any of the tested HDPs. Similarly, modification of the lipid A phosphate (MCR-1 phenotype) also did not affect the activity of the HDPs. Furthermore, assessment of inner and outer membrane damage revealed that CATH-2 and PMAP-36 are profoundly membrane-active and disrupt the inner and outer membrane of Escherichia coli simultaneously, suggesting that crossing the outer membrane is the rate-limiting step in the bactericidal activity of these HDPs but is independent of the presence of an O-antigen. In contrast to killing, larger differences were observed for the anti-endotoxin properties of HDPs. CATH-2 and PMAP-36 were much stronger at suppressing LPS-induced activation of macrophages compared to PR-39 and PMAP-23. In addition, the presence of only one phosphate group in the lipid A moiety reduced the immunomodulating activity of these HDPs. Overall, the data strongly suggest that LPS composition has little effect on bacterial killing but that Lipid A modification can affect the immunomodulatory role of HDPs. This dual activity should be considered when HDPs are considered for application purposes in the treatment of infectious diseases.

20.
J Biol Chem ; 286(23): 20137-51, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21489996

RESUMEN

Porcine surfactant protein D (pSP-D) displays distinctively strong, broad-range inhibitory activity against influenza A virus (IAV). N-Linked glycosylation of the carbohydrate recognition domain (CRD) of pSP-D contributes to the high affinity of this collectin for IAV. To investigate the role of the N-linked glycan further, HEK293E protein expression was used to produce recombinant pSP-D (RpSP-D) that has similar structural and antiviral properties as NpSP-D. We introduced an additional N-linked glycan in the CRD of RpSP-D but this modification did not alter the antiviral activity. Human SP-D is unglycosylated in its CRD and less active against IAV compared with pSP-D. In an attempt to modify its antiviral properties, several recombinant human SP-D (RhSP-D) mutants were constructed with N-linked glycans introduced at various locations within its CRD. To retain lectin activity, necessary for the primary interactions between SP-D and IAV, N-linked glycosylation of RhSP-D was shown to be restricted to the corresponding position in the CRD of either pSP-D or surfactant protein A (SP-A). These N-glycosylated RhSP-D mutants, however, did not show increased neutralization activity against IAV. By developing RhSP-D mutants that also have the pSP-D-specific Ser-Gly-Ala loop inserted in the CRD, we could demonstrate that the N-linked glycan-mediated interactions between pSP-D and IAV involves additional structural prerequisites of the pSP-D CRD. Ultimately, these studies will help to develop highly effective SP-D-based therapeutic and prophylactic drugs against IAV.


Asunto(s)
Virus de la Influenza A/metabolismo , Lectinas , Polisacáridos/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Animales , Perros , Glicosilación , Células HEK293 , Humanos , Virus de la Influenza A/química , Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/terapia , Mutación , Polisacáridos/química , Polisacáridos/genética , Proteína A Asociada a Surfactante Pulmonar/química , Proteína A Asociada a Surfactante Pulmonar/genética , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/química , Proteína D Asociada a Surfactante Pulmonar/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA