Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Viruses ; 13(8)2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34452537

RESUMEN

The post-acute phase of SARS-CoV-2 infection was investigated in rhesus (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis). During the acute phase of infection, SARS-CoV-2 was shed via the nose and throat, and viral RNA was occasionally detected in feces. This phase coincided with a transient change in systemic immune activation. Even after the alleged resolution of the infection, computed tomography (CT) and positron emission tomography (PET)-CT revealed pulmonary lesions and activated tracheobronchial lymph nodes in all animals. Post-mortem histological examination of the lung tissue revealed mostly marginal or resolving minimal lesions that were indicative of SARS-CoV-2 infection. Evidence for SARS-CoV-2-induced histopathology was also found in extrapulmonary tissue samples, such as conjunctiva, cervical, and mesenteric lymph nodes. However, 5-6 weeks after SARS-CoV-2 exposure, upon necropsy, viral RNA was still detectable in a wide range of tissue samples in 50% of the macaques and included amongst others the heart, the respiratory tract and surrounding lymph nodes, salivary gland, and conjunctiva. Subgenomic messenger RNA was detected in the lungs and tracheobronchial lymph nodes, indicative of ongoing virus replication during the post-acute phase. These results could be relevant for understanding the long-term consequences of COVID-19 in humans.


Asunto(s)
COVID-19/patología , COVID-19/virología , Pulmón/patología , SARS-CoV-2/fisiología , Animales , Anticuerpos Antivirales/sangre , COVID-19/inmunología , Citocinas/sangre , Modelos Animales de Enfermedad , Humanos , Pulmón/virología , Ganglios Linfáticos/patología , Ganglios Linfáticos/fisiopatología , Macaca fascicularis , Macaca mulatta , ARN Mensajero/análisis , ARN Viral/análisis , Sistema Respiratorio/patología , Sistema Respiratorio/virología , SARS-CoV-2/inmunología , Replicación Viral
2.
Primate Biol ; 4(1): 117-125, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32110699

RESUMEN

Endometriosis is a poorly understood common debilitating women's reproductive disorder resulting from proliferative and ectopic endometrial tissue associated with variable clinical symptoms including dysmenorrhea (painful menstrual periods), dyspareunia (pain on intercourse), female infertility, and an increased risk of malignant transformation. The rhesus macaque (Macaca mulatta) develops a spontaneous endometriosis that is very similar to that seen in women. We hypothesized that specific major histocompatibility complex (MHC) alleles may contribute to the pathogenesis of endometriosis. As part of a collaboration between the Biomedical Primate Research Centre (BPRC) in the Netherlands and the New England Primate Research Center (NEPRC) in the United States, we analyzed DNA sequences of MHC class I (Macaca mulatta, Mamu-A1) and class II (Mamu-DRB) alleles from rhesus macaques with endometriosis and compared the allele frequencies with those of age-matched healthy macaques. We demonstrate that two MHC class I alleles are overrepresented in diseased macaques compared to controls: Mamu-A1*001, 33.3 % in BPRC animals with endometriosis vs. 11.6 % in healthy macaques ( p =  0.007), and Mamu-A1*007, 21.9 % NEPRC rhesus macaques vs. 6.7 %, ( p =  0.003). We provide evidence that select MHC class I alleles are associated with endometriosis in rhesus macaques and suggest that the disease pathogenesis contribution of MHC class I warrants further research.

3.
Genome Announc ; 4(1)2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26798086

RESUMEN

We report here the full-length genome sequence of a novel chimpanzee polyomavirus. Viral sequences were recovered from colon, bladder, and ureter tissue from a western common chimpanzee. The virus is genetically closely related to the human BK polyomavirus.

4.
PLoS Negl Trop Dis ; 8(4): e2797, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24743302

RESUMEN

West Nile virus (WNV) is a mosquito-borne flavivirus that infects humans and other mammals. In some cases WNV causes severe neurological disease. During recent years, outbreaks of WNV are increasing in worldwide distribution and novel genetic variants of the virus have been detected. Although a substantial amount of data exists on WNV infections in rodent models, little is known about early events during WNV infection in primates, including humans. To gain a deeper understanding of this process, we performed experimental infections of rhesus macaques and common marmosets with a virulent European WNV strain (WNV-Ita09) and monitored virological, hematological, and biochemical parameters. WNV-Ita09 productively infected both monkey species, with higher replication and wider tissue distribution in common marmosets compared to rhesus macaques. The animals in this study however, did not develop clinical signs of WNV disease, nor showed substantial deviations in clinical laboratory parameters. In both species, the virus induced a rapid CD56dimCD16bright natural killer response, followed by IgM and IgG antibody responses. The results of this study show that healthy rhesus macaques and common marmosets are promising animal models to study WNV-Ita09 infection. Both models may be particularly of use to evaluate potential vaccine candidates or to investigate WNV pathogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Fiebre del Nilo Occidental/patología , Fiebre del Nilo Occidental/virología , Animales , Anticuerpos Antivirales/sangre , Antígeno CD56/análisis , Callithrix , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Inmunofenotipificación , Células Asesinas Naturales/química , Células Asesinas Naturales/inmunología , Macaca mulatta , Receptores de IgG/análisis , Virus del Nilo Occidental/crecimiento & desarrollo
5.
PLoS One ; 9(11): e112568, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25392925

RESUMEN

The mosquito-borne West Nile virus (WNV) causes human and animal disease with outbreaks in several parts of the world including North America, the Mediterranean countries, Central and East Europe, the Middle East, and Africa. Particularly in elderly people and individuals with an impaired immune system, infection with WNV can progress into a serious neuroinvasive disease. Currently, no treatment or vaccine is available to protect humans against infection or disease. The goal of this study was to develop a WNV-vaccine that is safe to use in these high-risk human target populations. We performed a vaccine efficacy study in non-human primates using the contemporary, pathogenic European WNV genotype 1a challenge strain, WNV-Ita09. Two vaccine strategies were evaluated in rhesus macaques (Macaca mulatta) using recombinant soluble WNV envelope (E) ectodomain adjuvanted with Matrix-M, either with or without DNA priming. The DNA priming immunization was performed with WNV-DermaVir nanoparticles. Both vaccination strategies successfully induced humoral and cellular immune responses that completely protected the macaques against the development of viremia. In addition, the vaccine was well tolerated by all animals. Overall, The WNV E protein adjuvanted with Matrix-M is a promising vaccine candidate for a non-infectious WNV vaccine for use in humans, including at-risk populations.


Asunto(s)
Fiebre del Nilo Occidental/prevención & control , Vacunas contra el Virus del Nilo Occidental/uso terapéutico , Virus del Nilo Occidental/clasificación , Animales , Anticuerpos Antivirales/sangre , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Culicidae , Europa (Continente) , Inmunidad Celular , Inmunidad Humoral , Inyecciones Intradérmicas , Interferón gamma/inmunología , Macaca mulatta , Estructura Terciaria de Proteína , Proteínas del Envoltorio Viral/inmunología , Carga Viral , Viremia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA