Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Ecol Appl ; 34(1): e2826, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36840509

RESUMEN

Environmental DNA (eDNA) has increasingly been used to detect rare species (e.g., newly introduced nonindigenous species) in both terrestrial and aquatic ecosystems, often with distinct advantages over traditional methods. However, whether water eDNA signals can be used to inform invasion risks remains debatable owing to inherent uncertainties associated with the methods used and the varying conditions among study systems. Here, we sampled eDNA from canals of the central route of the South-to-North Water Diversion Project (hereafter SNWDP) in China to investigate eDNA distribution and efficacy to inform invasion risks in a unique lotic system. We first conducted a total of 16 monthly surveys in this system (two sites in the source reservoir and four sites in the main canal) to test if eDNA could be applied to detect an invasive, biofouling bivalve, the golden mussel Limnoperna fortunei. Second, we initiated a one-time survey in a sub-canal of the SNWDP using refined sampling (12 sites in ~22 km canal) and considered a few environmental predictors. We found that detection of target eDNA in the main canal was achieved up to 1100 km from the putative source population but was restricted to the warmer months (May-November). Detection probability exhibited a significant positive relationship with average daily minimum air temperature and with water temperature, consistent with the expected spawning season. eDNA concentration in the main canal generally fluctuated across months and sites and was generally higher in warmer months. Golden mussel eDNA concentration in the sub-canal decreased significantly with distance from the source and with increasing water temperature and became almost undetectable at ~22 km distance. Given the enormity of the SNWDP, golden mussels may eventually expand their distribution in the main canal, with established "bridgehead" populations facilitating further spread. Our findings suggest an elevated invasion risk of golden mussels in the SNWDP in warm months, highlighting the critical period for spread and, possibly, management.


Asunto(s)
Incrustaciones Biológicas , Bivalvos , ADN Ambiental , Animales , ADN Ambiental/genética , Agua , Ecosistema , Bivalvos/genética
2.
Bull Environ Contam Toxicol ; 99(5): 542-547, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28936616

RESUMEN

Habitat homogenization, nutrient enrichment and loss of biodiversity are broadly recognized as the consequences of human activity in aquatic systems. Diatoms (Bacillariophyceae) are frequently used in aquatic environmental assessment and impact monitoring, but in unique habitats dominated by endemic taxa, traditional approaches may not be appropriate. We examined the impacts of long term anthropogenic impacts upon the littoral episammic diatom community around the town of Soroako, located on Lake Matano, an ancient tropical lake. Lake Matano is located on central Sulawesi Island, Indonesia, and socio-economic conditions are typical of developing nations. Although differences in nutrient concentrations were undetectable with field-based spectroscopy approaches, mean Shannon diversity was decreased in association with proximity the town-site. However, mean ß-diversity was maintained despite several decades of shoreline modification at Soroako. Elevated abundances of early-successional diatom taxa in the disturbed area drove differences between areas immediately offshore of Soroako and those farther away. These findings suggest that increased physical disturbance and TSS loads around Soroako, rather than increased nutrient loading, influenced shifts in the diatom community. These results suggest that microscopy-based biomonitoring approaches are sensitive indicators of environmental modification that could be useful in areas where access to cutting-edge analytical equipment is limited.


Asunto(s)
Diatomeas/fisiología , Monitoreo del Ambiente/métodos , Biodiversidad , Diatomeas/efectos de los fármacos , Ecosistema , Indonesia , Lagos/química
3.
Environ Sci Technol ; 50(20): 11103-11111, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27643699

RESUMEN

Accurate predictions on the bioaccumulation of persistent organic pollutants (POPs) are critical for hazard and ecosystem health assessments. Aquatic systems are influenced by multiple stressors including climate change and species invasions and it is important to be able to predict variability in POP concentrations in changing environments. Current steady state bioaccumulation models simplify POP bioaccumulation dynamics, assuming that pollutant uptake and elimination processes become balanced over an organism's lifespan. These models do not consider the complexity of dynamic variables such as temperature and growth rates which are known to have the potential to regulate bioaccumulation in aquatic organisms. We contrast a steady state (SS) bioaccumulation model with a dynamic nonsteady state (NSS) model and a no elimination (NE) model. We demonstrate that both the NSS and the NE models are superior at predicting both average concentrations as well as variation in POPs among individuals. This comparison demonstrates that temporal drivers, such as environmental fluctuations in temperature, growth dynamics, and modified food-web structure strongly determine contaminant concentrations and variability in a changing environment. These results support the recommendation of the future development of more dynamic, nonsteady state bioaccumulation models to predict hazard and risk assessments in the Anthropocene.


Asunto(s)
Cambio Climático , Ecología , Organismos Acuáticos , Ecosistema , Monitoreo del Ambiente , Cadena Alimentaria , Humanos
4.
Bull Environ Contam Toxicol ; 97(6): 757-762, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27385372

RESUMEN

Quantitative biomonitoring methods were applied to determine PCB concentrations in water from the Detroit River over a 17 year period. During 2014, mussels were deployed for and extended duration (21-364 days) and time dependent PCB concentrations were fit to a bioaccumulation model to estimate elimination coefficients (ktot) and provide site specific calibration of mussel toxicokinetics. The site specific calibration and different ktot versus KOW relationships from the literature were used to correct for steady state. ∑PCB concentrations in water were not significantly dependent on the ktot values used indicating that individual variation exceeds error contributed by steady state correction factors. The model was then applied to estimate ∑PCB concentrations in water using the long term (1998-2015) data. ∑PCBs concentrations in water exhibited a significant decreasing trend with a half life of 9.12 years resulting in a drop in yearly geometric mean residues from 198.1 to 43.6 pg/L.


Asunto(s)
Monitoreo del Ambiente/métodos , Bifenilos Policlorados/análisis , Contaminantes Químicos del Agua/análisis , Animales , Bivalvos , Ríos/química , Toxicocinética , Unionidae , Agua/análisis
5.
Environ Sci Technol ; 49(18): 11019-27, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26287735

RESUMEN

Both mercury (Hg) and polychlorinated biphenyls (PCBs) demonstrate food web biomagnification in aquatic ecosystems, yet their toxicokinetics have not been simultaneously contrasted within a common fish species. This study quantifies uptake and elimination rates of Hg and PCBs in goldfish. Fish were exposed to contaminated food containing PCBs and Hg to determine dietary chemical assimilation efficiencies (AEs) and elimination coefficients (ktot). To test first-order kinetics, three exposure regimes were established by varying the proportion of contaminated fish incorporated into the food. Dietary AEs were 98 ± 10, 75 ± 12, and 40 ± 9% for MeHg, THg, and PCBs, respectively. The ktot values were 0.010 ± 0.003 and 0.010 ± 0.002 day(-1) for THg and MeHg, respectively. No significant differences were found in ktot among the dosing levels for either THg or MeHg, confirming that Hg elimination is a first-order process. For PCB, ktot ranged from 0.007 to 0.022 day(-1) and decreased with an increase in hydrophobicity. This study revealed that Hg had an AE higher than that of PCBs, while the ktot of Hg was similar to those measured for the most hydrophobic PCBs. We conclude that Hg has a bioaccumulation potential in goldfish 118% higher than the highest PCB BMF observed for congeners with a log KOW of >7.


Asunto(s)
Carpa Dorada/metabolismo , Mercurio/farmacocinética , Bifenilos Policlorados/farmacocinética , Contaminantes Químicos del Agua/farmacocinética , Animales , Ecosistema , Ecotoxicología/métodos , Cadena Alimentaria , Interacciones Hidrofóbicas e Hidrofílicas , Mercurio/análisis , Compuestos de Metilmercurio/química , Compuestos de Metilmercurio/farmacocinética , Bifenilos Policlorados/análisis , Toxicocinética , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 49(21): 12832-9, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26437236

RESUMEN

Measuring in situ nutrient and energy flows in spatially and temporally complex aquatic ecosystems represents a major ecological challenge. Food web structure, energy and nutrient budgets are difficult to measure, and it is becoming more important to quantify both energy and nutrient flow to determine how food web processes and structure are being modified by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an ideal tracer to quantify in situ energy and nutrient flow between trophic levels. Here, we demonstrate how an understanding of PCB congener bioaccumulation dynamics provides multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (>5 yr) recycled an average of 482 Tonnes·yr(-1) of N, 45 Tonnes·yr(-1) of P and assimilated 22 TJ yr(-1) of energy. Compared to total P loading rates of 590 Tonnes·yr(-1), the recycling of primarily bioavailable nutrients by fish plays an important role regulating the nutrient states of oligotrophic lakes.


Asunto(s)
Peces/fisiología , Cadena Alimentaria , Bifenilos Policlorados/análisis , Contaminantes Químicos del Agua/análisis , Animales , Organismos Acuáticos , Ecosistema , Metabolismo Energético , Lagos , Nitrógeno/análisis , Ontario , Fósforo/análisis , Bifenilos Policlorados/farmacocinética , Trucha/fisiología , Contaminantes Químicos del Agua/farmacocinética
7.
Bull Environ Contam Toxicol ; 95(1): 31-6, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25673522

RESUMEN

Sediments collected in 2004 from along the Detroit River (n = 19) and across all of Lake Erie (n = 18) were analyzed for isomers of the flame retardant chemical, hexabromocyclododecane (HBCD), using liquid chromatography-tandem mass spectrometry. Sediment samples had ΣHBCD concentrations ranging from not detected to 1.6 ng/g d.w. γ-HBCD (56 %-100 % of ΣHBCDs) was the predominate isomer, observed in 7 of 19 samples from the Detroit River and 6 of 18 samples from Lake Erie (all within the western basin). α-HBCD was found in 4 Detroit River and 2 Lake Erie western basin sites, while ß-HBCD was only in two Detroit River samples. High ΣHBCD concentrations (>100 ng/g d.w.) were found in two sludge samples from two Windsor, ON, wastewater treatment plants that feed into the Detroit River upstream. HBCD contamination into the Detroit River is a major input vector into Lake Erie and with an apparent sediment dilution effect moving towards the eastern basin.


Asunto(s)
Monitoreo del Ambiente/métodos , Retardadores de Llama/análisis , Sedimentos Geológicos/química , Hidrocarburos Bromados/análisis , Lagos/química , Ríos/química , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida , Great Lakes Region , Hidrocarburos Bromados/química , Isomerismo , Espectrometría de Masas , Contaminantes Químicos del Agua/química
8.
Mar Pollut Bull ; 206: 116781, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39096867

RESUMEN

Effective management of Harmful Algal Blooms (HABs) requires understanding factors influencing their occurrence. This study explores these dynamics in the Pengxi River, a tributary of the Three Gorges Reservoir, focusing on nutrient stratification and algal blooms. We hypothesized that nutrient levels in eutrophic waters with stable stratification correlate with HAB magnitude and that disruption of stratification triggers blooms due to nutrient shifts. A 38-day sampling campaign in Gaoyang Lake (April 16-May 23, 2022) revealed that consistent weather between April 26 and May 16 led to a surface density layer, restricting nutrient transfer and causing a bloom with 173.0 µg L-1 Chl-a on May 1. After a heavy rain on May 18, a peak bloom on May 20, dominated by Ceratium hirundinella, showed 533 µg L-1 Chl-a. There was a significant negative correlation between Cyanobacteria and C. hirundinella biomasses (r = -0.296, P < 0.01), highlighting nutrient availability and physical stability's roles in regulating HABs.

9.
Environ Sci Technol ; 46(18): 10279-86, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22913231

RESUMEN

The gastrointestinal magnification (GI-magnification) model was calibrated in ring doves and Japanese koi using matched data on dietary assimilation and fecal depuration of polychlorinated biphenyls (PCBs). Mass transport parameters describing PCB flux from gut contents to organism (D(go)'; mol d(-1) Pa(-1)) and organism to gut contents (D(og); mol d(-1) Pa(-1)) were quantified to test the hypothesis that the ratio of these two terms approached unity. For birds, D(go)'/D(og) ranged from 2.9 to 6.3 and for fish the ratios ranged from 0.7 to 3.1. In both species, the ratio commonly exceeded 1. The GI-magnification model was used to predict maximum PCB biomagnification factors (BMF(max)) for each species which ranged from 18.5 to 33.8 for ring doves and 7.9 to 14.8 for Japanese koi. Chemical losses via respiration reduced steady state biomagnification factor (BMF(ss)) estimates by a negligible amount in birds, whereas for fish, predicted BMF(ss) decreased to values from 0.5 to 7.2. This study demonstrated that chemical transfer efficiency during assimilation exceeds organism/feces transfer which contributes to elevated PCB biomagnification potentials in birds and fish. Combined with reduced losses of chemical across respiratory surfaces, higher D(go)'/D(og) ratios of birds contribute to elevated biomagnification in birds over fish.


Asunto(s)
Aves/metabolismo , Contaminantes Ambientales/metabolismo , Peces/metabolismo , Bifenilos Policlorados/metabolismo , Animales , Contaminantes Ambientales/análisis , Heces/química , Cadena Alimentaria , Tracto Gastrointestinal/metabolismo , Modelos Biológicos , Bifenilos Policlorados/análisis
10.
Sci Total Environ ; 839: 156183, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35623511

RESUMEN

The microbial food-loop is critical to energy flow in aquatic food webs. We tested the hypothesis that species composition and relative abundance in a microbial community would be modified by the development of toxic algal blooms either by enhanced carbon production or toxicity. This study tracked the response of the microbial community with respect to composition and relative abundance during a 7-day algal bloom event in the Three Gorges Reservoir in May 2018. Chlorophyll a biomass, microscopic identification and cell counting of algae and algal abundance (ind. L-1) and carbon, nutrient concentrations (total phosphorus and nitrogen, dissolved total phosphorus and nitrogen), and DNA high throughput sequencing were measured daily. Algal density (1.2 × 109 ind. L-1) and Chlorophyll a (219 µg L-1) peaked on May 20th-21st, when the phytoplankton community was dominated by Chlorella spp. and Microcystis spp. The concentrations of both dissolved total nitrogen and phosphorus declined during the bloom period. Based on DNA high throughput sequencing data, the relative abundance of eukaryotic phytoplankton, microzooplankton (20-200 µm), mesozooplankton (>200 µm), and fungal communities varied day by day while the prokaryotic community revealed a more consistent structure. Enhanced carbon production during the bloom was closely associated with increased heterotrophic microbial composition in both the prokaryotic and eukaryotic communities. A storm event, however, that caused surface cooling and deep mixing of the water column greatly modified the composition and relative abundance of species in the microbial loop. The high temporal variability and dynamics observed in this study suggest that many factors, and not just algal blooms, were interacting to determine the composition and relative abundance of species of the microbial loop.


Asunto(s)
Chlorella , Microbiota , Carbono , China , Clorofila A , Eutrofización , Nitrógeno/análisis , Fósforo/análisis , Fitoplancton
11.
Proc Natl Acad Sci U S A ; 105(41): 15938-43, 2008 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-18838679

RESUMEN

Considerable discussion surrounds the potential role of anoxygenic phototrophic Fe(II)-oxidizing bacteria in both the genesis of Banded Iron Formations (BIFs) and early marine productivity. However, anoxygenic phototrophs have yet to be identified in modern environments with comparable chemistry and physical structure to the ancient Fe(II)-rich (ferruginous) oceans from which BIFs deposited. Lake Matano, Indonesia, the eighth deepest lake in the world, is such an environment. Here, sulfate is scarce (<20 micromol x liter(-1)), and it is completely removed by sulfate reduction within the deep, Fe(II)-rich chemocline. The sulfide produced is efficiently scavenged by the formation and precipitation of FeS, thereby maintaining very low sulfide concentrations within the chemocline and the deep ferruginous bottom waters. Low productivity in the surface water allows sunlight to penetrate to the >100-m-deep chemocline. Within this sulfide-poor, Fe(II)-rich, illuminated chemocline, we find a populous assemblage of anoxygenic phototrophic green sulfur bacteria (GSB). These GSB represent a large component of the Lake Matano phototrophic community, and bacteriochlorophyll e, a pigment produced by low-light-adapted GSB, is nearly as abundant as chlorophyll a in the lake's euphotic surface waters. The dearth of sulfide in the chemocline requires that the GSB are sustained by phototrophic oxidation of Fe(II), which is in abundant supply. By analogy, we propose that similar microbial communities, including populations of sulfate reducers and photoferrotrophic GSB, likely populated the chemoclines of ancient ferruginous oceans, driving the genesis of BIFs and fueling early marine productivity.


Asunto(s)
Chlorobi/metabolismo , Ambiente , Microbiología del Agua , Anaerobiosis , Archaea , Indonesia , Hierro/metabolismo , Luz , Biología Marina , Datos de Secuencia Molecular , Oxidación-Reducción , Sulfuros , Luz Solar
12.
Environ Toxicol Chem ; 40(12): 3421-3433, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34587647

RESUMEN

Persistent organic pollutants (POPs) in biota are influenced by ecological, physiological, and physicochemical properties; however, there is a need for a better understanding about the interplay of these parameters on POP dynamics and fate. To address this, POPs in three Lake Erie freshwater fishes (freshwater drum, Aplodinotus grunniens; walleye, Sander vitreus; and white perch, Morone americana) with different feeding ecologies were assessed using life history characteristics and three stable isotopes (δ13 C, δ15 N, and δ34 S). Lipid normalized POP concentrations were in the range of past studies and were generally similar among the three species when all ages were combined. Principal component analysis (PCA) found the two significant PCs (explaining 59% and 10% of the variation), with all POPs loading significantly onto PC1, which indicated a common source of contamination, likely legacy sediment loads. Loadings on both PCs were correlated with POP log KOW . Age, habitat use (δ13 C and δ34 S), trophic position (δ15 N) and interactions between age and δ15 N, age and species, and δ15 N and δ34 S were significant predictors of POP concentration based on PC1 scores, whereas δ13 C and species were significant predictors of PC2 scores. The similar concentrations among the species, yet variation related to the ecology (age and trophic position) across individuals demonstrates the complexity of contaminant dynamics in freshwater fish in a large lake system and the need to consider variation across individuals within species. Environ Toxicol Chem 2021;40:3421-3433. © 2021 SETAC.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Peces/fisiología , Cadena Alimentaria , Lagos/química , Contaminantes Químicos del Agua/análisis
13.
Sci Total Environ ; 765: 144435, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33418329

RESUMEN

The quagga mussel (Dreissena rostriformis bugensis) is a filter-feeding invasive species that has re-engineered many freshwater ecosystems worldwide. High clearance rates (CRs) and dense populations underpin their ecological impacts. CRs, however, are highly variable, as are environmental factors that regulate them. Despite their widespread distribution in Europe and North America, knowledge of how multiple environmental factors regulate CRs of quagga mussels remains limited. We investigated quagga mussel CRs under varying conditions including water temperature, food availability, habitat depth, flow velocity, and duration of incubation in chambers with both static and flowing water. We found that CR was positively related to water temperature and initial food concentration in static chambers. When coupled with limited food concentration, cold water (7.5 °C), due to a deep-water upwelling event, produced very low CR (~ 10× lower) compared to warmer water (12-24 °C) (0.47 vs. 3.12-5.84 L g-1 DW h-1). Mussels from deeper water (20 m) had CRs that were ~ 3.5× higher than from shallower depths (2-10 m) and CRs were inversely affected by total mussel dry weight. Flow rates from 1 to 22 cm s-1 generated a unimodal pattern of CR with an optimal flow velocity of 6-12 cm s-1 (~ 2× higher than suboptimal CRs). Enhanced flow velocity (22 cm s-1), reflective of storm conditions in shallow waters, significantly increased the closing/reopening activity of mussel valves relative to lower velocities (1-12 cm s-1). Incubation time had a strong negative effect (~ 2-4× reduction) on CRs likely reflecting refiltration in static chambers versus food saturation of mussels in flowing chambers, respectively. Our findings highlight how multiple factors can influence quagga mussel CRs by factors of 2-10. Given widespread habitat heterogeneity in large aquatic ecosystems, whole-lake estimates of mussel impacts should include multiple regulatory factors that affect mussel filtration.


Asunto(s)
Bivalvos , Dreissena , Animales , Ecosistema , Europa (Continente) , Lagos , América del Norte
14.
Environ Sci Technol ; 44(15): 5769-74, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20666556

RESUMEN

This research investigated dose-dependent whole body and fecal elimination of 39 polychlorinated biphenyl (PCB) congeners spanning a range of chemical hydrophobicities (log Kow) by the Japanese koi (Cyprinus carpio). Both whole body (ktot) and fecal (keg) PCB congener elimination rate coefficients were negatively correlated with log Kow and observed to be dose independent. PCB congener ktot values determined for koi were representative of those generated for fish species of similar size and reared at near optimal temperatures. For persistent and metabolized-type PCB congeners, no significant difference was observed between the regressions describing the relationships between ktot and log Kow for these congeners. Individual PCB congener keg coefficient estimates ranged between 1% and 20% of their respective ktot values but averaged only 5% of the magnitude of ktot over a log Kow range of 5.7-7.8. These results verify first-order kinetics of PCB elimination by a fish species and demonstrate that the relative contribution of keg to ktot is negligible, even for highly hydrophobic (log Kow>6.5) compounds. It was concluded that gill elimination is the primary mechanism of elimination for persistent organic pollutants such as PCBs by Japanese koi.


Asunto(s)
Carpas/metabolismo , Defecación , Heces/química , Bifenilos Policlorados/farmacocinética , Contaminantes Químicos del Agua/farmacocinética , Animales , Bifenilos Policlorados/análisis , Contaminantes Químicos del Agua/análisis
15.
Environ Toxicol Chem ; 29(2): 401-409, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20821460

RESUMEN

The influence of diet on polychlorinated biphenyl (PCB) assimilation was investigated by measuring dietary assimilation efficiencies (AEs) for 47 PCB congeners in juvenile koi (Cyprinus carpio) fed five experimental diets. Two of the diets were naturally contaminated and were obtained by collecting mayflies from Lake Erie (ON, Canada) and emerald shiners from the Detroit River (MI, USA). The remaining diets consisted of commercial fish pellets (lipid contents from 6.7 to 24%) that were contaminated by spiking with a PCB mixture. Experimental fish were held individually to quantify the amount of food consumed per fish and, following a 48-h fasting period to facilitate food digestion and assimilation; AEs were determined by mass balance. Fish fed the benthic invertebrate food exhibited the highest PCB AEs (70-101%) and were significantly elevated compared to the other diet treatments (AEs ranging from 23 to 87%). The PCB AEs for fish fed emerald shiners did not differ from those fed pellet formulations. Variation among PCB AEs was not related to diet lipid content. For all diet treatments, PCB AEs were significantly related to chemical hydrophobicity. The relationship between chemical AE and n-octanol/water partition coefficient (K(OW)) was best explained by a linear model compared to a two-phase resistance model. Overall, PCB AEs were observed to be dependent on both diet type and chemical hydrophobicity, with both factors contributing nearly equally to the variation measured in this toxicokinetic parameter.


Asunto(s)
Carpas/metabolismo , Bifenilos Policlorados/farmacocinética , Animales , Dieta , Interacciones Hidrofóbicas e Hidrofílicas , Bifenilos Policlorados/química
16.
Environ Toxicol Chem ; 29(3): 700-7, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20821497

RESUMEN

The present study examined polychlorinated biphenyl (PCB) elimination rates in overwintering green frogs (Rana clamitans) to determine if changes in chemical activity occurred during hibernation. Adult green frogs were dosed with a 1:1:1 ratio of Aroclors 1248:1254:1260 in sunflower oil and allowed to enter into hibernation. Frogs were collected at four time points over the course of 85 days. Significant PCB elimination rates ranged from 0.0027 to 0.0376 d(-1). A negative correlation was found between K(OW) and elimination rate. Over the course of the present study, a decrease in total body percent lipid was measured. There was an overall increase in fugacity of higher K(OW) compounds corresponding to the relatively rapid decrease in lipid content. Congeners in metabolic group 2 (meta-para vicinal hydrogen atoms) were preferentially eliminated over those in metabolic group 3 (ortho-meta vicinal hydrogen atoms), suggesting that biotransformation was occurring during hibernation. It was concluded that metabolic activity during hibernation, associated with water temperature, was sufficiently high to reduce lipid concentrations and increase chemical activity in emerging adults.


Asunto(s)
Hibernación , Bifenilos Policlorados/farmacocinética , Ranidae/metabolismo , Contaminantes Químicos del Agua/farmacocinética , Animales , Metabolismo de los Lípidos , Bifenilos Policlorados/química , Análisis de Regresión
17.
Environ Toxicol Chem ; 39(9): 1712-1723, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32503079

RESUMEN

The Lake Huron ecosystem is unique among the Laurentian Great Lakes (USA/Canada) in that its surface area encompasses 3 distinct basins. This ecosystem recently experienced significant ecological restructuring characterized by changes in primary production, species dominance and abundances, and top predator energy dynamics. However, much of the evidence for this restructuring has been largely derived from biomonitoring data obtained from long-term sampling of the lake's Main Basin. We examined polychlorinated biphenyl (PCB) concentrations and the stable isotopes of carbon (δ13 C) and nitrogen (δ15 N) in rainbow smelt (Osmerus mordax), bloater (Coregonus hoyi), and round goby (Neogobius melanostomus) to determine spatial variability in these environmental markers as indicators of the ubiquity of trophic restructuring throughout Lake Huron. Stable isotopes indicated that North Channel fish occupied trophic positions between 0.5 and 1.0 lower relative to Main Basin and Georgian Bay conspecifics, respectively. Sum PCB concentrations for 41 congeners were highest for fish from the Main Basin (27.5 ± 3.0 ng g-1 wet wt) and Georgian Bay (26.3 ± 3.4 ng g-1 wet wt) relative to North Channel (13.6 ± 1.2 ng g-1 wet wt) fish. Discriminant functions analysis demonstrated basin-specific PCB congener profiles with individual species also having distinct profiles dependent on their basin of collection. These bioaccumulation patterns among Lake Huron forage fish mirror those reported for lake trout in this lake and indicate that the degree of food-web ecological restructuring in Lake Huron is not equivalent across the basins. Specifically, basin-specific PCB congener profiles demonstrated that differences among Lake Huron secondary and top predator consumer species are likely dictated by cross-basin differences in zooplankton community ecology and trophodynamics that can regulate the efficiencies of prey energy transfer and PCB congener bioaccumulation patterns in aquatic food webs. Environ Toxicol Chem 2020;39:1712-1723. © 2020 SETAC.


Asunto(s)
Bioacumulación , Monitoreo del Ambiente , Peces/metabolismo , Lagos/química , Contaminantes Químicos del Agua/metabolismo , Animales , Canadá , Análisis Discriminante , Geografía , Marcaje Isotópico , Lípidos/química , Bifenilos Policlorados/metabolismo , Salmonidae/metabolismo , Trucha/metabolismo
18.
Sci Total Environ ; 711: 134679, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31810685

RESUMEN

Filter feeding activities link suspension feeders with their environment and underpin their impact on aquatic ecosystems. Despite their ecological and economic impacts, the functional response and size-selective capture of suspended particulates have not been well documented for the golden mussel Limnoperna fortunei. Here we demonstrated that golden mussels had a type I functional response, with an attack rate a = 0.085 and negligible handling time (h). Clearance rate ranged between 72.6 ± 27.0 and 305.5 ± 105.9 mL ind.-1h-1 (Mean ± S.E.), depending on food concentrations, which exhibited an inverse relationship with clearance rate. Presence of golden mussels suppressed chlorophyll a concentration in experimental mesocosms, the extent of which was dependent on mussel abundance. Concentration of suspended particles in experimental mesocosms experienced a sharp initial decline across all size categories (≤1->50 µm), though with increased final concentration of large particles (>25 µm), indicating packaging and egestion by golden mussels of fine particles (down to ≤1 µm). Capture efficiency of quantitatively-dominant suspended matter (≤1-50 µm) by golden mussels was inversely related to particle size. Animal abundance, particle size, and their interaction (abundance × particle size) determined the extent to which matter was removed from the water column. Presently L. fortunei occurs primarily in the southern end of the central route of South to North Water Diversion Project (China), but the species is spreading north; we anticipate that impacts associated with filtering of L. fortunei will correspond with local population abundance along this gradient.


Asunto(s)
Mytilidae , Animales , China , Clorofila A , Ecosistema , Agua Dulce
19.
Environ Toxicol Chem ; 38(6): 1245-1255, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30901097

RESUMEN

Lake ecosystems are threatened by an array of stressors. An understanding of how food webs and bioaccumulation dynamics respond to these challenges requires the quantification of energy flow. We present a combined, multitracer approach using both polychlorinated biphenyls (PCBs) and stable isotopes to trace energy flow, and to quantify how lake trout feeding strategies have adapted to changes in food web structure in 3 basins of Lake Huron (ON, Canada). This combined tracer approach allows the quantification of dietary proportions (using stable isotopes), which are then integrated using a novel PCB tracer approach that employs knowledge of PCB bioaccumulation pathways, to estimate consumption and quantify energy flow between age cohorts of individual fish across Lake Huron. We observed basin-specific differences in ultimate energy sources for lake trout, with Georgian Bay lake trout deriving almost 70% of their energy from benthic resources compared with 16 and 33% for Main Basin and North Channel lake trout, respectively. These differences in resource utilization are further magnified when they are contrasted with age. The dependency on pelagic energy sources in the Main Basin and North Channel suggests that these populations will be the most negatively affected by the ongoing trophic collapse in Lake Huron. Our study demonstrates the utility of a multitracer approach to quantify the consequences of food web adaptations to changes in aquatic ecosystems. Environ Toxicol Chem 2019;38:1245-1255. © 2019 SETAC.


Asunto(s)
Monitoreo del Ambiente , Lagos/química , Trucha/metabolismo , Animales , Canadá , Cadena Alimentaria , Geografía , Bifenilos Policlorados/análisis , Contaminantes Químicos del Agua/análisis
20.
Environ Pollut ; 243(Pt A): 152-162, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30172121

RESUMEN

This study evaluated the effect of growth of different tissue compartments on the bioaccumulation of mercury (Hg) and polychlorinated biphenyls (PCBs) in Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) from the Three Gorges Reservoir (TGR), China. A non-steady state bioenergetics/toxicokinetic model was developed to simulate PCB and Hg concentrations in these two species and compared with field data. Simulations using constant whole body growth rate and constant tissue to whole body weight ratios were contrasted against simulations adopting age specific whole body and tissue/age specific growth rates for their goodness of fit to field data. The simulations using age/tissue specific growth rates demonstrated better fit to field data for PCBs compared to the constant growth rate models (22% improved R2), while both models explained similar variation in Hg concentration data. Both species demonstrated higher growth rates of lipids (on a daily basis) relative to whole body and protein contributing to higher growth dilution of PCBs compared to Hg. Although stable isotope data indicated some degree of diet and/or habitat shift, simulations assuming a constant diet concentration explained between 36 and 40% of the variation in fish concentrations for both contaminants and fish species. This study demonstrates that differences in the bioaccumulation rate of PCBs and Hg by Asian carp can be partially explained by differences in the growth rates of key tissue storage compartments associated with each contaminant. These differences in chemical-specific growth dilution subsequently contribute to differences in chemical retention and bioaccumulation patterns of Hg and PCBs by fish.


Asunto(s)
Carpas/crecimiento & desarrollo , Carpas/metabolismo , Mercurio/farmacocinética , Bifenilos Policlorados/farmacocinética , Contaminantes Químicos del Agua/farmacocinética , Abastecimiento de Agua , Agua/química , Factores de Edad , Animales , China , Simulación por Computador , Modelos Biológicos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA