Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 578(7795): 413-418, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32051589

RESUMEN

The mammalian claustrum, owing to its widespread connectivity with other forebrain structures, has been hypothesized to mediate functions that range from decision-making to consciousness1. Here we report that a homologue of the claustrum, identified by single-cell transcriptomics and viral tracing of connectivity, also exists in a reptile-the Australian bearded dragon Pogona vitticeps. In Pogona, the claustrum underlies the generation of sharp waves during slow-wave sleep. The sharp waves, together with superimposed high-frequency ripples2, propagate to the entire neighbouring pallial dorsal ventricular ridge (DVR). Unilateral or bilateral lesions of the claustrum suppress the production of sharp-wave ripples during slow-wave sleep in a unilateral or bilateral manner, respectively, but do not affect the regular and rapidly alternating sleep rhythm that is characteristic of sleep in this species3. The claustrum is thus not involved in the generation of the sleep rhythm itself. Tract tracing revealed that the reptilian claustrum projects widely to a variety of forebrain areas, including the cortex, and that it receives converging inputs from, among others, areas of the mid- and hindbrain that are known to be involved in wake-sleep control in mammals4-6. Periodically modulating the concentration of serotonin in the claustrum, for example, caused a matching modulation of sharp-wave production there and in the neighbouring DVR. Using transcriptomic approaches, we also identified a claustrum in the turtle Trachemys scripta, a distant reptilian relative of lizards. The claustrum is therefore an ancient structure that was probably already present in the brain of the common vertebrate ancestor of reptiles and mammals. It may have an important role in the control of brain states owing to the ascending input it receives from the mid- and hindbrain, its widespread projections to the forebrain and its role in sharp-wave generation during slow-wave sleep.


Asunto(s)
Claustro/anatomía & histología , Claustro/fisiología , Lagartos/anatomía & histología , Lagartos/fisiología , Sueño/fisiología , Animales , Claustro/citología , Claustro/lesiones , Masculino , Mamíferos/fisiología , Mesencéfalo/citología , Mesencéfalo/fisiología , Vías Nerviosas , RNA-Seq , Rombencéfalo/citología , Rombencéfalo/fisiología , Serotonina/metabolismo , Análisis de la Célula Individual , Transcriptoma , Tortugas/anatomía & histología , Tortugas/fisiología
2.
Science ; 377(6610): eabp8202, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36048944

RESUMEN

The existence of evolutionarily conserved regions in the vertebrate brain is well established. The rules and constraints underlying the evolution of neuron types, however, remain poorly understood. To compare neuron types across brain regions and species, we generated a cell type atlas of the brain of a bearded dragon and compared it with mouse datasets. Conserved classes of neurons could be identified from the expression of hundreds of genes, including homeodomain-type transcription factors and genes involved in connectivity. Within these classes, however, there are both conserved and divergent neuron types, precluding a simple categorization of the brain into ancestral and novel areas. In the thalamus, neuronal diversification correlates with the evolution of the cortex, suggesting that developmental origin and circuit allocation are drivers of neuronal identity and evolution.


Asunto(s)
Evolución Biológica , Corteza Cerebral , Expresión Génica , Lagartos , Neuronas , Animales , Corteza Cerebral/citología , Evolución Molecular , Perfilación de la Expresión Génica , Ratones , Neuronas/citología , Neuronas/metabolismo
3.
Neuron ; 100(6): 1414-1428.e10, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30392795

RESUMEN

Finding food and remaining at a food source are crucial survival strategies. We show how neural circuits and signaling molecules regulate these food-related behaviors in Caenorhabditis elegans. In the absence of food, AVK interneurons release FLP-1 neuropeptides that inhibit motorneurons to regulate body posture and velocity, thereby promoting dispersal. Conversely, AVK photoinhibition promoted dwelling behavior. We identified FLP-1 receptors required for these effects in distinct motoneurons. The DVA interneuron antagonizes signaling from AVK by releasing cholecystokinin-like neuropeptides that potentiate cholinergic neurons, in response to dopaminergic neurons that sense food. Dopamine also acts directly on AVK via an inhibitory dopamine receptor. Both AVK and DVA couple to head motoneurons by electrical and chemical synapses to orchestrate either dispersal or dwelling behavior, thus integrating environmental and proprioceptive signals. Dopaminergic regulation of food-related behavior, via similar neuropeptides, may be conserved in mammals.


Asunto(s)
Dopamina/farmacología , Alimentos , Locomoción/efectos de los fármacos , Vías Nerviosas/fisiología , Neuropéptidos/farmacología , Sensación/fisiología , Células Receptoras Sensoriales/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Dopamina/metabolismo , Vías Nerviosas/efectos de los fármacos , Neuropéptidos/metabolismo , Optogenética , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/fisiología , Células Receptoras Sensoriales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA