RESUMEN
Immunotherapy shows a lot of promise for addressing the problems with traditional cancer treatments. Researchers and clinicians are working to create innovative immunological techniques for cancer detection and treatment that are more selective and have lower toxicity. An emerging field in cancer therapy, immunomodulation offers patients an alternate approach to treating cancer. These therapies use the host's natural defensive systems to identify and remove malignant cells in a targeted manner. Cancer treatment is now undergoing somewhat of a revolution due to recent developments in nanotechnology. Diverse nanomaterials (NMs) have been employed to overcome the limits of conventional anti-cancer treatments such as cytotoxic, surgery, radiation, and chemotherapy. Aside from that, NMs could interact with live cells and influence immune responses. In contrast, unexpected adverse effects such as necrosis, hypersensitivity, and inflammation might result from the immune system (IS)'s interaction with NMs. Therefore, to ensure the efficacy of immunomodulatory nanomaterials, it is essential to have a comprehensive understanding of the intricate interplay that exists between the IS and NMs. This review intends to present an overview of the current achievements, challenges, and improvements in using immunomodulatory nanomaterials (iNMs) for cancer therapy, with an emphasis on elucidating the mechanisms involved in the interaction between NMs and the immune system of the host.
Asunto(s)
Antineoplásicos , Nanoestructuras , Neoplasias , Humanos , Nanoestructuras/uso terapéutico , Nanotecnología , Antineoplásicos/uso terapéutico , Inmunoterapia , Neoplasias/tratamiento farmacológicoRESUMEN
The aim of this research work was to formulate and evaluate ciprofloxacin hydrochloride-loaded nanocarriers for treating dental infections and bone regeneration. Periodontal infection is associated with inflammation, soft tissue destruction, and bone loss. The objective of the study was to extract ß tricalcium phosphate (ß-TCP) from coral beach sand using the hydrothermal conversion method and load these nanocarriers with ciprofloxacin hydrochloride. The developed drug-loaded nanocarriers were evaluated for various parameters. In vitro drug-loading studies showed the highest drug loading of 71% for F1 with a drug: carrier ratio compared to plain ciprofloxacin hydrochloride gel. ß-TCP and nanocarriers were evaluated for powder characteristics and the results were found to have excellent and fair flowability. In vitro drug release studies conducted over a period of 5 days confirmed the percentage drug release of 96% at the end of 120 h. Nanocarriers were found to be effective against S. aureus and E. coli showing statistically significant antibacterial activity at (* p < 0.05) significant level as compared to plain ciprofloxacin hydrochloride gel. The particle size of ß-TCP and nanocarriers was found to be 2 µm. Fourier transform infra-red studies showed good compatibility between the drug and the excipients. Differential scanning calorimetry studies revealed the amorphous nature of the nanocarriers as evident from the peak shift. It is obvious from the XRD studies that the phase intensity was reduced, which demonstrates a decrease in crystallinity. Nanocarriers released the drug in a controlled manner, hence may prove to be a better option to treat dental caries as compared to conventional treatments.
Asunto(s)
Antibacterianos , Caries Dental , Humanos , Antibacterianos/química , Staphylococcus aureus , Escherichia coli , Ciprofloxacina/farmacología , Ciprofloxacina/químicaRESUMEN
Recent studies have indicated that microRNA and VEGF are considered to be genetic modifiers and are associated with elevated levels of fetal haemoglobin HbF, and thus they reduce the clinical impact of sickle haemoglobin (HbS) patients. This cross-sectional study was performed on clinical confirmed subjects of SCD cases. miR-423-rs6505162 C>T and VEGF-2578 C>A genotyping was conducted by ARMS-PCR in SCD and healthy controls. A strong clinical significance was reported while comparing the association of miR-423 C>T genotypes between SCD patients and controls (p = 0.031). The microRNA-423 AA genotype was associated with an increased severity of SCD in codominant model with odd ratio (OR = 2.36, 95% CI, (1.15-4.84), p = 0.018) and similarly a significant association was observed in recessive inheritance model for microRNA-423 AA vs (CC+CA) genotypes (OR = 2.19, 95% CI, (1.32-3.62), p < 0.002). The A allele was associated with SCD severity (OR = 1.57, 95% CI, (1.13-2.19), p < 0.007). The distribution of VEGF-2578 C>A genotypes between SCD patients and healthy controls was significant (p < 0.013). Our results indicated that in the codominant model, the VEGF-2578-CA genotype was strongly associated with increased SCD severity with OR = 2.56, 95% CI, (1.36-4.82), p < 0.003. The higher expression of HbA1 (65.9%), HbA2 (4.40%), was reported in SCD patients carrying miR-423-AA genotype than miR-423 CA genotype in SCD patients carrying miR-423 CA genotype HbA1 (59.98%), HbA2 (3.74%) whereas SCD patients carrying miR-423 CA genotype has higher expression of HbF (0.98%) and HbS (38.1%) than in the patients carrying AA genotype HbF (0.60%), HbS (36.1%). ARMS-PCR has been proven to be rapid, inexpensive and is highly applicable to gene mutation screening in laboratories and clinical practices. This research highlights the significance of elucidating genetic determinants that play roles in the amelioration of the HbF levels that is used as an indicator of severity of clinical complications of the monogenic disease. Further well-designed studies with larger sample sizes are necessary to confirm our findings.
RESUMEN
BACKGROUND AND AIM: Despite the fact that the chikungunya viral infection is a neglected disease, complications such as hemorrhagic fever, arthritis, and lymphopenia remain a health concern. The aim of this study was to determine the prevalence of the chikungunya virus in the Southern Region, Saudi Arabia. Enzyme immunoassay and polymerase chain reaction have been compared between samples. MATERIALS AND METHODS: Forty samples from two southern hospitals in Saudi Arabia were collected between December 2019 and February 2020 and screened for chikungunya virus IgG antibodies and for viral RNA. Selection criteria were based on hematological parameters and rheumatological profiles such as rheumatoid factor, c-reactive protein, anti-nuclear antibody, and anti-cyclic citrullinated peptide (anti-CCP) of out-patients. RESULTS: One confirmed case of chikungunya virus was detected using the ELISA test. However, no viral RNA was detected in any of the samples. This suggests that the virus is cleared rapidly in patients. CONCLUSION: Chikungunya is a neglected viral disease in Saudi Arabia. Future work should focus on detailed investigation of this viral infection and its vectors.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Anticuerpos Antivirales , Virus Chikungunya/genética , Ensayo de Inmunoadsorción Enzimática , Humanos , Arabia Saudita/epidemiologíaRESUMEN
Paradoxical Raf activation via Raf dimerization is a major drawback of wild/mutant B-Raf inhibitors. Herein, we report that CB-1 a novel, potent B-Raf/c-Raf dual inhibitor, effective against colon cancer cells, irrespective of their genetic status. High-throughput virtual screening of the ChemBridge library against wild B-Raf (B-RafWT), mutant B-Raf (B-RafV600E), and c-Raf was performed using an automated protocol with the AutoDock-VINA. Caco-2 and HT-29 cells were used. Of the 23,365 compounds screened computationally, CB-1 showed the highest binding energy towards B-RafWT with a ΔGbinding score of - 13.0 kcal/mol. The compound was also predicted to be effective against B-RafV600E and c-Raf molecules with ΔGbinding energies of - 10.6 and - 10.1 kcal/mol, respectively. The compound inhibited B-RafWT, B-RafV600E and c-Raf kinases with IC50 values of 27.13, 51.70, and 40.23 nM, respectively. The GI50 value of CB-1 was 247.9 nM in B-RafWT-expressing Caco-2 cells and 352.4 nM in B-RafV600E-expressing HT-29 cells. Dose-dependent increases in total apoptosis and G1 cell cycle phase arrest was observed in CB-1-treated colon cancer cells. The compound decreased B-Raf expression in both wild and mutant colon cancer cells. CB-1, a novel, potent dual B-Raf/c-Raf inhibitor was effective against colon cancer cells bearing wild-type and mutant variants of B-Raf expression.
Asunto(s)
Neoplasias Colorrectales , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Células CACO-2 , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Células HT29 , Ensayos Analíticos de Alto Rendimiento , Humanos , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-raf/genéticaRESUMEN
The coronavirus pandemic has affected more than 150 million people, while over 3.25 million people have died from the coronavirus disease 2019 (COVID-19). As there are no established therapies for COVID-19 treatment, drugs that inhibit viral replication are a promising target; specifically, the main protease (Mpro) that process CoV-encoded polyproteins serves as an Achilles heel for assembly of replication-transcription machinery as well as down-stream viral replication. In the search for potential antiviral drugs that target Mpro, a series of cembranoid diterpenes from the biologically active soft-coral genus Sarcophyton have been examined as SARS-CoV-2 Mpro inhibitors. Over 360 metabolites from the genus were screened using molecular docking calculations. Promising diterpenes were further characterized by molecular dynamics (MD) simulations based on molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. According to in silico calculations, five cembranoid diterpenes manifested adequate binding affinities as Mpro inhibitors with ΔGbinding < -33.0 kcal/mol. Binding energy and structural analyses of the most potent Sarcophyton inhibitor, bislatumlide A (340), was compared to darunavir, an HIV protease inhibitor that has been recently subjected to clinical-trial as an anti-COVID-19 drug. In silico analysis indicates that 340 has a higher binding affinity against Mpro than darunavir with ΔGbinding values of -43.8 and -34.8 kcal/mol, respectively throughout 100 ns MD simulations. Drug-likeness calculations revealed robust bioavailability and protein-protein interactions were identified for 340; biochemical signaling genes included ACE, MAPK14 and ESR1 as identified based on a STRING database. Pathway enrichment analysis combined with reactome mining revealed that 340 has the capability to re-modulate the p38 MAPK pathway hijacked by SARS-CoV-2 and antagonize injurious effects. These findings justify further in vivo and in vitro testing of 340 as an antiviral agent against SARS-CoV-2.
Asunto(s)
Antozoos/química , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasa de Coronavirus/farmacología , Diterpenos/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Proteasa de Coronavirus/química , Inhibidores de Proteasa de Coronavirus/aislamiento & purificación , Diterpenos/química , Diterpenos/aislamiento & purificación , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , SARS-CoV-2/enzimología , SARS-CoV-2/patogenicidad , Relación Estructura-ActividadRESUMEN
Background and Objectives: The aim of this study was to compare the effects of low-level laser therapy and continuous microwave diathermy on the growth of Gram-negative and Gram-positive bacteria and to establish their efficacy as an alternative therapeutic modality. MATERIALS AND METHODS: Laser fluence of 13 Joules (J)/cm2, 18 J/cm2 and 30 J/cm2 were used against several bacterial strains. Microwave dosages of 25, 50 and 100 watts (W) were used, respectively. RESULTS: A significant difference between the three groups was observed using repeated analysis of variance (RANOVA) (F value: 0.74, and p value: 0.001). The Greenhouse-Geisser correction (GG) revealed significant results for laser irradiation alone. However, effect size calculation showed effects with microwave diathermy as well as laser fluence. CONCLUSIONS: Low-level laser therapy appears to be an effective modality of treatment when compared with continuous microwave diathermy on the Gram-negative and the Gram-positive bacterial strains tested. Microwave diathermy revealed large and medium effects on the bacterial cell counts with dominant effects on Gram-negative strains.
Asunto(s)
Antiinfecciosos/normas , Bacterias Gramnegativas/efectos de la radiación , Bacterias Grampositivas/efectos de la radiación , Terapia por Luz de Baja Intensidad/normas , Análisis de Varianza , Antiinfecciosos/efectos de la radiación , Antiinfecciosos/uso terapéutico , Diatermia/métodos , Diatermia/normas , Humanos , Terapia por Luz de Baja Intensidad/métodosRESUMEN
OBJECTIVES: To ascertain the prevalence of transfusion transmissible infections (TTIs) across diverse donor groups in the Najran province. Additionally, to establish a potential association between the development of TTI and the donors' blood group, as determined by the ABO/Rh blood grouping system. METHODS: Blood donation data of 4120 donors, spanning from January to December 2020, were retrospectively reviewed. The blood were screened for TTI markers, including hepatitis B surface antigen (HBsAg), anti-hepatitis B core (anti-HBc), anti-hepatitis C virus (anti-HCV), anti-human immunodeficiency viruses 1 and 2 (anti-HIV1&2), anti-human T-lymphotropic virus types 1 and 2 (anti-HTLV-1&2), and syphilis antigen. RESULTS: Positive TTI markers were detected in 10.9% of the donors. The most detected TTI marker was anti-HBc (8.9%), followed by HBsAg (0.7%). Other markers were individually detected in <1% of the donors. Anti-HBc-positive was significantly elevated among non-Saudi blood donors. There was an association between age groups and anti-HCV (p=0.002), anti-HTLV (p=0.004) and syphilis antigen (p=0.02) markers positivity. The AB positive blood group exhibited the most positivity for TTI markers, followed by O positive blood group. Similarly, association was found between ABO group and HBsAg (p=0.01), anti-HBc (p=0.001), and anti-HCV (p<0.001) markers positivity. CONCLUSION: Emphasis on implementing robust screening measures for donated blood is underscored by this study. There is the need for future study to extensively evaluate TTI status to enhance our understanding of the trend in TTI.
Asunto(s)
Sistema del Grupo Sanguíneo ABO , Donantes de Sangre , Antígenos de Superficie de la Hepatitis B , Humanos , Adulto , Antígenos de Superficie de la Hepatitis B/sangre , Arabia Saudita/epidemiología , Masculino , Donantes de Sangre/estadística & datos numéricos , Estudios Retrospectivos , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Sífilis/epidemiología , Sífilis/sangre , Adulto Joven , Reacción a la Transfusión/epidemiología , Reacción a la Transfusión/sangre , Prevalencia , Adolescente , Hepatitis B/epidemiología , Hepatitis B/sangre , Anticuerpos contra la Hepatitis B/sangre , Infecciones por VIH/epidemiología , Infecciones por VIH/sangreRESUMEN
Multidrug resistance in bacterial strains known as superbugs is estimated to cause fatal infections worldwide. Migration and urbanization have resulted in overcrowding and inadequate sanitation, contributing to a high risk of superbug infections within and between different communities. The CRISPR-Cas system, mainly type II, has been projected as a robust tool to precisely edit drug-resistant bacterial genomes to combat antibiotic-resistant bacterial strains effectively. To entirely opt for its potential, advanced development in the CRISPR-Cas system is needed to reduce toxicity and promote efficacy in gene-editing applications. This might involve base-editing techniques used to produce point mutations. These methods employ designed Cas9 variations, such as the adenine base editor (ABE) and the cytidine base editor (CBE), to directly edit single base pairs without causing DSBs. The CBE and ABE could change a target base pair into a different one (for example, G-C to A-T or C-G to A-T). In this review, we addressed the limitations of the CRISPR/Cas system and explored strategies for circumventing these limitations by applying diverse base-editing techniques. Furthermore, we also discussed recent research showcasing the ability of base editors to eliminate drug-resistant microbes.
RESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continues to inflict chaos globally. The emergence of a novel Omicron variant (B.1.1.529) in South Africa harbors 30 mutations in the spike protein. The variant is distinguished from other variants of concern (VOCs) with an increased (15) number of mutations in the receptor-binding domain (RBD) and suggests higher chances of causing reinfections. Initial reports also claimed that this variant escapes all the neutralizing antibodies, thus demanding a novel strategy against it. Thus, in this study, we performed a computational molecular screening against the RBD of the Omicron (B.1.1.529) variant and assessed the binding affinity of potent drugs against the RBD. The multi-steps screening of the South African Natural Compounds Database (SANCDB) revealed four medicinal compounds as excellent (potential) anti-viral agents against the Omicron variant, namely SANC00944, SANC01032, SANC00992, and SANC00317. The simulation analysis of these compounds in complex with the RBD demonstrated stable dynamics and structural compactness. Moreover, the residual flexibility analysis revealed that the flexibility of three loops required for interaction with hACE2 has been reduced by the binding of these drugs. The post-simulation validation of these compounds such as binding free energy, in silico bioactivity, and dissociation constant prediction validated the anti-viral potency of these compounds. The total binding free energy (TBFE) for the SANC01032-RBD complex was reported to be -46.54 kcal/mol; for the SANC01032-RBD complex, the TBFE was -41.88 kcal/mol; for the SANC00992-RBD complex the TBFE was -29.05 kcal/mol, while for the SANC00317-RBD complex the TBFE was -31.03 kcal/mol. The results showed the inhibition potential of these compounds by targeting the RBD. In conclusion, this study will help in the design and discovery of novel drug therapeutics, which may be used against the emerging Omicron variant of SARS-CoV-2.
RESUMEN
Background: Conserved domains within SARS-CoV-2 nonstructural proteins represent key targets for the design of novel inhibitors. Methods: The authors aimed to identify potential SARS-CoV-2 NSP5 inhibitors using the ZINC database along with structure-based virtual screening and molecular dynamics simulation. Results: Of 13,840 compounds, 353 with robust docking scores were initially chosen, of which ten hit compounds were selected as candidates for detailed analyses. Three compounds were selected as coronavirus NSP5 inhibitors after passing absorption, distribution, metabolism, excretion and toxicity study; root and mean square deviation; and radius of gyration calculations. Conclusion: ZINC000049899562, ZINC000169336666 and ZINC000095542577 are potential NSP5 protease inhibitors that warrant further experimental studies.
Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/química , Antivirales/farmacología , Proteasas 3C de Coronavirus/metabolismo , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/enzimología , Tratamiento Farmacológico de COVID-19RESUMEN
Antibiotic resistance (AR) is the resistance mechanism pattern in bacteria that evolves over some time, thus protecting the bacteria against antibiotics. AR is due to bacterial evolution to make itself fit to changing environmental conditions in a quest for survival of the fittest. AR has emerged due to the misuse and overuse of antimicrobial drugs, and few antibiotics are now left to deal with these superbug infections. To combat AR, vaccination is an effective method, used either therapeutically or prophylactically. In the current study, an in silico approach was applied for the design of multi-epitope-based vaccines against Providencia rettgeri, a major cause of traveler's diarrhea. A total of six proteins: fimbrial protein, flagellar hook protein (FlgE), flagellar basal body L-ring protein (FlgH), flagellar hook-basal body complex protein (FliE), flagellar basal body P-ring formation protein (FlgA), and Gram-negative pili assembly chaperone domain proteins, were considered as vaccine targets and were utilized for B- and T-cell epitope prediction. The predicted epitopes were assessed for allergenicity, antigenicity, virulence, toxicity, and solubility. Moreover, filtered epitopes were utilized in multi-epitope vaccine construction. The predicted epitopes were joined with each other through specific GPGPG linkers and were joined with cholera toxin B subunit adjuvant via another EAAAK linker in order to enhance the efficacy of the designed vaccine. Docking studies of the designed vaccine construct were performed with MHC-I (PDB ID: 1I1Y), MHC-II (1KG0), and TLR-4 (4G8A). Findings of the docking study were validated through molecular dynamic simulations, which confirmed that the designed vaccine showed strong interactions with the immune receptors, and that the epitopes were exposed to the host immune system for proper recognition and processing. Additionally, binding free energies were estimated, which highlighted both electrostatic energy and van der Waals forces to make the complexes stable. Briefly, findings of the current study are promising and may help experimental vaccinologists to formulate a novel multi-epitope vaccine against P. rettgeri.
RESUMEN
The effects of the learning environment on academic performance can be investigated according to a broad range of factors using a diversity of approaches. Many differences in academic performance have been associated with the sex of the student. Objectives: This study aims to understand the impact of absenteeism on the final grades earned by full-time medical laboratory sciences undergraduate students and whether this is affected by sex. Academic performance was analyzed using students' final grades from two consecutive semesters (January to April and September to December 2019). The differences between male (n = 43) and female (n = 72) students were evaluated by Pearson's correlation. During the semester, all teaching and assessment methods were standardized across both course sections to avoid confounding effects derived from the teaching method. Academic performance was assessed both objectively (multiple-choice questions) and subjectively (short essay questions). The mean scores of male and female students during two semesters were significantly different (p = 0.0180). To correlate marks with absenteeism, the correlation coefficient (r) was negative, which indicates an inverse correlation between absence rate and scores. Interestingly, a statistically significant correlation between absenteeism and final grades was found in the male sample population (p = 0.0011 for the first semester; p = 0.0255 for the second semester) that was not observed for their female counterparts (p = 0.2041; p = 0.1537). The results indicate that academic performance among women is not solely dependent on class attendance but likely involves other factors such as self-learning, and group discussion. The mean scores of female medical sciences students were significantly higher than the male students for two consecutive semesters. Male overall scores seem to be conditional on the instructor's explanation. This sex-based variation in academic performance revealed by taking absenteeism rate into account warrant further investigation.
Asunto(s)
Absentismo , Éxito Académico , Estudiantes de Medicina/estadística & datos numéricos , Femenino , Humanos , Aprendizaje , Masculino , Factores SexualesRESUMEN
BACKGROUND: Studies of risk factors are especially valuable at this difficult time in the midst of a pandemic. High levels of particulate matter (PM) represent a serious risk factor on health. While this is a direct impact on health, indirect effects are worth considering, too. DESIGN AND METHODS: The aim of this study was to investigate the role of PM in the transmission of viruses, especially SARS-CoV-2. Also, we sought to understand dynamics of PM in still air at high and low altitudes. Historic AQI and physical PM measurements were collected between August and September 2020 using air quality detector. Potential correlations between the number of total confirmed COVID-19 cases and average air quality index (AQI) from varied geographic locations were also assessed. RESULTS: Airborne PM levels were weakly associated with COVID-19 cases after analysing 77 territories. PM remained longer in the air at high altitudes compared to measurements made at sea level. This suggests that the link between PM and COVID-19 transmission could be aggravated in areas of high altitude. CONCLUSIONS: This article highlights that particulate matter can be involved in SARS-CoV-2 transmission. However, confounding factors may have impacted the association between the two variables. These findings can serve as a foundation for future studies on the effect of air pollutants and fine particulate matter on viral transmission.
RESUMEN
AIM: The present study aims to assess the antimicrobial action of three different pulp-capping agents against Enterococcus faecalis. MATERIALS AND METHODS: Three pulp-capping agents were chosen for this study: Calcicur, mineral trioxide aggregate (MTA)-Angelus, and Dycal. The zone of inhibition produced by these three pulp-capping agents was measured at 24 h and 72 h to assess their antimicrobial efficacy against E. faecalis. The agar diffusion method was used to examine the antimicrobial effect of pulp-capping agents. Mueller-Hinton agar plates were used to inoculate the microorganisms. Analysis of variance (ANOVA) and Tukey's post hoc tests were done to compare the different groups. P < 0.05 was considered as statistically significant. RESULTS: At 24 h, the highest zone of inhibition was found in MTA-Angelus (3.32 ± 0.11 mm), followed by Dycal (2.02 ± 0.46 mm) and Calcicur (1.84 ± 0.92 mm). After 72 h, MTA-Angelus demonstrated a zone of inhibition of 4.60 ± 0.22 mm, followed by Dycal (3.48 ± 0.74 mm) and Calcicur (2.90 ± 0.18 mm). ANOVA test showed a highly statistical significance. A statistically significant difference (P < 0.001) was shown between MTA-Angelus and Dycal. Calcicur did not show any significant difference. CONCLUSION: This trial found that the freshly mixed MTA-Angelus has a significantly superior antimicrobial effect against E. faecalis than Dycal and Calcicur.
RESUMEN
COVID-19 (Virus named as severe acute respiratory syndrome coronavirus 2 (SARS-- CoV-2)) is a pandemic disease characterized by respiratory infection caused by a coronavirus. It has spread worldwide after an outbreak began in Wuhan, China, in December 2019. SARS-CoV-2 has infected more than 15 million people globally. The disease severity and mortality increased in patients with heart-related comorbidities. Cardiovascular disease patients are more susceptible and infected with SARS-CoV-2. Early screening and management of these patients prevent or ameliorate adverse outcomes. Several treatments have been used to combat these effects, as previously seen in MERS and SARS. This review will cover the association of cardiovascular diseases with COVID 19. It showed that cardiovascular diseases are common in patients with COVID- 19. Increased attention to highlight the gaps should be paid to the care of this unique group of patients.
Asunto(s)
COVID-19/epidemiología , Enfermedades Cardiovasculares/epidemiología , SARS-CoV-2/patogenicidad , COVID-19/terapia , COVID-19/virología , Enfermedades Cardiovasculares/cirugía , Enfermedades Cardiovasculares/virología , Comorbilidad , Trasplante de Corazón , Interacciones Huésped-Patógeno , Humanos , Pronóstico , Medición de Riesgo , Factores de RiesgoRESUMEN
Coronavirus disease 2019 (COVID-19) is a new pandemic characterized by quick spreading and illness of the respiratory system. To date, there is no specific therapy for Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). Flavonoids, especially rutin, have attracted considerable interest as a prospective SARS-CoV-2 main protease (Mpro) inhibitor. In this study, a database containing 2017 flavone analogs was prepared and screened against SARS-CoV-2 Mpro using the molecular docking technique. According to the results, 371 flavone analogs exhibited good potency towards Mpro with docking scores less than -9.0 kcal/mol. Molecular dynamics (MD) simulations, followed by molecular mechanics-generalized Born surface area (MM/GBSA) binding energy calculations, were performed for the top potent analogs in complex with Mpro. Compared to rutin, PubChem-129-716-607 and PubChem-885-071-27 showed better binding affinities against SARS-CoV-2 Mpro over 150 ns MD course with ΔGbinding values of -69.0 and -68.1 kcal/mol, respectively. Structural and energetic analyses demonstrated high stability of the identified analogs inside the SARS-CoV-2 Mpro active site over 150 ns MD simulations. The oral bioavailabilities of probable SARS-CoV-2 Mpro inhibitors were underpinned using drug-likeness parameters. A comparison of the binding affinities demonstrated that the MM/GBSA binding energies of the identified flavone analogs were approximately three and two times less than those of lopinavir and baicalein, respectively. In conclusion, PubChem-129-716-607 and PubChem-885-071-27 are promising anti-COVID-19 drug candidates that warrant further clinical investigations.
Asunto(s)
COVID-19 , Flavonas , Descubrimiento de Drogas , Flavonas/farmacología , Humanos , Simulación del Acoplamiento Molecular , Estudios Prospectivos , Inhibidores de Proteasas , Rutina/farmacología , SARS-CoV-2RESUMEN
Breast cancer is a heterogeneous disease in which genetic factors are involved in disease worsening and higher mortality. Epidemiological and clinical research revealed that breast cancer incidence continues to rise. 100 histopathologically confirmed untreated newly diagnosed cases of invasive ductal carcinoma (IDC) of breast and 100 healthy subjects were involved and blood samples were collected in non-EDTA plain vials. Serum was separated by centrifugation, total RNA was extracted from serum, and cDNA synthesis was done to study the miRNA-495 and neurexin-1 (NRXN-1) and contactin 1 (CNTN-1) mRNA expression by QRT-PCR. The expression levels of miRNA-495, NRXN-1, and CNTN-1 were expressed in fold change. The present study observed decreased relative miRNA-495 expression (0.07-fold) while an increase in NRXN-1 (11.61-fold) and CNTN-1 (4.92-fold) was observed among breast cancer patients compared to healthy controls. A significant difference was observed in miRNA-495 expression with menopausal status (p=0.0001) and TNM stages (p=0.02). It was observed that NRXN-1 expression was significantly associated with menopausal status (p=0.03), lymph node involvement (p < 0.0001), estrogen receptor (ER) status (p=0.03), progesterone receptor (PR) status (p=0.005), TNM stages (p < 0.0001), and distant metastases (p < 0.0001). CNTN-1 expression was also found to be associated with lymph node involvement (p=0.01), PR status (p=0.03), HER2 status (p=0.04), TNM stages (p < 0.0001), and distant metastases (p < 0.0001). ROC suggested that NRXN-1 and CNTN-1 could be the important predictive marker for disease advancement and distant organ metastases. The study concluded that the decreased expression of miR-495 observed in breast cancer patients showed a negative correlation with NRXN-1 while the increased expression of NRXN-1 and CNTN-1 was linked with disease advancement and distant metastases and could be the important predictive marker for breast cancer patients.
RESUMEN
OBJECTIVES: To explore the antibacterial activity of thymoquinone (TQ), a quinone extracted from Nigella sativa. METHODS: This study was conducted from May 2019 to March 2020 at the Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia. The antimicrobial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of TQ were determined using an agar well diffusion method and broth microdilution assays, and the synergistic effect was evaluated using antibiotics in parallel. The disruptive effect of TQ on bacterial cell membranes was determined using scanning electron microscopy. The antivirulence properties of TQ, which include adherence and biofilm formation, were also investigated using adherence and biofilm formation assays, respectively. RESULTS: Thymoquinone demonstrated bactericidal efficacy against 4/14 bacterial strains, with MIC range of 1.04-8.3 µg/mL and and MBC range of 10.41-66.66 µg/mL. Thymoquinone showed synergism against Klebsiella pneumoniae, Staphylococcus epidermidis (American Type Culture Collection 12228), Staphylococcus aureus, and Staphylococcus epidermidis in combination with the tested antibiotics. Thymoquinone inhibited bacterial adhesion by 39%-54%, 48%-68%, and 61%-81% at 0.5 × MIC, 1 × MIC, and 2 × MIC, respectively. The tested bacterial strains significantly inhibited biofilm formation after treatment with various concentrations of TQ for 24 and 48 hours. CONCLUSION: The combinatory effect of TQ with antimicrobials should be considered when developing new antimicrobial therapy regimens to overcome multidrug-resistant.
Asunto(s)
Antibacterianos , Benzoquinonas , Preparaciones Farmacéuticas , Antibacterianos/farmacología , Benzoquinonas/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana , Arabia SauditaRESUMEN
Continuous urban developments have resulted in increased demand for street furniture, one of which is street light columns. Artificial light at night (ALAN) pose significant impacts on insect diversity in urban and rural areas. The ALAN is a significant driver of decline in insect diversity. This study evaluated the impact of light intensity and sky quality at night on insect diversity in rural and urban areas of the Asir province, Saudi Arabia. Insect traps were installed in both areas during night. Light intensity of nearby road lamps was measured using light meter, while sky quality was measured using sky quality meter. Rural areas exhibited low light intensity (10.33 flux/f.candle) and good sky quality (18.80 magnitude/arcsec2). Urban areas exhibited intense light (89.33 flux/f.candle) and poor sky quality (15.49 magnitude/arcsec2). Higher insect diversity was recorded for rural areas where insects belonging to seven orders (i.e., Diptera, Lepidoptera, Hemiptera, Hymenoptera, Coleoptera, Neuroptera, and Dermaptera) were collected. However, insects of four orders (i.e., Diptera, Lepidoptera, Hemiptera, and Neuroptera) were found in urban areas indicating low diversity. Lepidopteran insects were frequently recorded from rural areas indicating they are attracted to artificial light. It is concluded that excessive ALAN and poor sky quality at night disrupt insect biodiversity. Therefore, ALAN and sky quality must be considered responsible for decline in insect biodiversity along with other known factors.