RESUMEN
AIMS: We investigated the effects of intraperitoneal injections of titanium dioxide nanoparticles (TiO2 NPs, 100 mg/kg) for 5 consecutive days on the developmental competence of murine oocytes. Furthermore, study the effects of TiO2 NPs on antioxidant and oxidative stress biomarkers, as well as their effects on expression of apoptotic and hypoxia inducing factor-1α (HIF1A) protein translation. Moreover, the possible ameliorating effects of intraperitoneal injections of fructose (2.75 mM/ml) was examined. MATERIALS AND METHODS: Thirty sexually mature (8-12 weeks old; ~ 25 g body weight) female mice were used for the current study. The female mice were assigned randomly to three treatment groups: Group1 (G1) mice were injected intraperitoneal (ip) with deionized water for 5 consecutive days; Group 2 (G2) mice were injected ip with TiO2 NPs (100 mg/kg BW) for 5 consecutive days; Group 3 (G3) mice were injected ip with TiO2 NPs (100 mg/kg BW + fructose (2.75 mM) for 5 consecutive days. RESULTS: Nano-titanium significantly decreased expression of GSH, GPx, and NO, expression of MDA and TAC increased. The rates of MI, MII, GVBD and degenerated oocytes were significantly less for nano-titanium treated mice, but the rate of activated oocytes was significantly greater than those in control oocytes. TiO2 NPs significantly increased expression of apoptotic genes (BAX, Caspase 3 and P53) and HIF1A. Intraperitoneal injection of fructose (2.75 mM/kg) significantly alleviated the detrimental effects of TiO2 NPs. Transmission electron microscopy indicated that fructose mitigated adverse effects of TiO2 NPs to alter the cell surface of murine oocytes. CONCLUSION: Results of this study suggest that the i/p infusion of fructose for consecutive 5 days enhances development of murine oocytes and decreases toxic effects of TiO2 NPs through positive effects on oxidative and antioxidant biomarkers in cumulus-oocyte complexes and effects to inhibit TiO2-induced increases in expression of apoptotic and hypoxia inducing factors.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Ratones , Femenino , Animales , Antioxidantes/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Titanio/toxicidad , Oocitos , Hipoxia/metabolismo , Hipoxia/veterinaria , Biomarcadores/metabolismo , Nanopartículas del Metal/toxicidadRESUMEN
In the current study, we aimed to investigate the neurotoxic effect of oral titanium dioxide nanoparticles (TiO2 NPs) as well as the possible neuroprotective effect of carboxymethyl chitosan in adult rats for 14 days. The results revealed that TiO2 NPs inhibited the activity of the acetylcholine esterase enzyme and the levels of serotonin, dopamine, and norepinephrine neurotransmitters. Additionally, it induced neuro-oxidative stress and neuroinflammation via an elevation in MDA levels and IL-6, while GSH concentration, as well as GPx and GST activities, were decreased. TiO2 NPs induced neuronal apoptosis through upregulation of the expression of caspase-8 and -9 that was further confirmed by increasing caspases-3 and -8 proteins in the hippocampus, cerebral cortex, and cerebellum. The expression of the immediate-early gene BDNF was increased in response to TiO2 NPs, while that of Arc was reduced. Chitosan significantly attenuated the TiO2 NPs-induced neurotoxicity regarding AChE, serotonin, MDA, GSH, GPx, GST, IL-6, caspases-8, -9, and -3. Chitosan inhibited the expression of Arc and alleviated the effect of TiO2 NPs on BDNF expression. Collectively, TiO2 NPs induced neurotoxicity via their action on vital neuronal biomarkers that might in turn cause brain dysfunction. Despite the neuroprotection of chitosan, its inhibitory effect on Arc expression should be considered.
Asunto(s)
Quitosano , Nanopartículas del Metal , Nanopartículas , Animales , Encéfalo , Nanopartículas/toxicidad , Estrés Oxidativo , Ratas , Titanio/toxicidadRESUMEN
Carriers of the human 15q13.3 microdeletion (MD) present with a variable spectrum of neuropathological phenotypes that range from asymptomatic to severe clinical outcomes, suggesting an interplay of genetic and non-genetic factors. The most common 2â¯MB 15q13.3 MD encompasses six genes (MTMR10, FAN1, TRPM1, KLF13, OTUD7A, and CHRNA7), which are expressed in neuronal and non-neuronal tissues. The nicotinic acetylcholine receptor (nAChR) α7, encoded by CHRNA7, is a key player in the cholinergic anti-inflammatory pathway, and the transcription factor KLF13 is also involved in immune responses. Using a mouse model with a heterozygous deletion of the orthologous region of the human 15q13.3 (Df[h15q13]/+), the present study examined peripheral and central innate immune responses to an acute intraperitoneal (i.p.) injection of the bacteriomimetic, lipopolysaccharide (LPS) (100⯵g/kg) in adult heterozygous (Het) and wildtype (WT) mice. Serum levels of inflammatory markers were measured 2â¯h post injection using a Multiplex assay. In control saline injected animals, all measured cytokines were at or below detection limits, whereas LPS significantly increased serum levels of interleukin 1beta (IL-1ß), tumor necrosis factor alpha (TNF-α), IL-6 and IL-10, but not interferon-γ. There was no effect of genotype but a sexual dimorphic response for TNF-α, with females exhibiting greater LPS-induced TNF-α serum levels than males. In situ hybridization revealed similar increases in LPS-induced c-fos mRNA expression in the dorsal vagal complex in all groups. The hippocampal expression of the pro-inflammatory cytokines was evaluated by real-time quantitative PCR. LPS-treatment resulted in significantly increased mRNA expression for IL-1ß, IL-6, and TNF-α compared to saline controls, with no effect of genotype, but a significant sex-effect was detected for IL-1ß. The present study provided no evidence for interactive effects between the heterozygous 15q13.3 MD and a low-dose LPS immune challenge in innate peripheral or central immune responses, although, sex-differential effects in males and females were detected.
Asunto(s)
Trastornos de los Cromosomas/metabolismo , Citocinas/sangre , Regulación de la Expresión Génica/efectos de los fármacos , Inmunidad Innata , Discapacidad Intelectual/metabolismo , Convulsiones/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/sangre , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/inmunología , Cromosomas Humanos Par 15/genética , Cromosomas Humanos Par 15/inmunología , Cromosomas Humanos Par 15/metabolismo , Citocinas/genética , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Hipocampo/metabolismo , Inmunidad , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Hibridación in Situ , Inflamación/sangre , Inflamación/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/inmunología , Interferón gamma/sangre , Interferón gamma/genética , Interleucina-10/sangre , Interleucina-10/genética , Interleucina-1beta/sangre , Interleucina-1beta/genética , Interleucina-6/sangre , Interleucina-6/genética , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Convulsiones/genética , Convulsiones/inmunología , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
This study evaluated the structural changes, the immunohistochemical and gene expression of neurotrophic factors in submandibular gland in a rat model of depression, and their correlation with depression parameters during and after relief of depression by voluntary running. Forty-eight male Wistar rats were divided into control, control-exercise, depression, and depression-exercise groups. Depression was induced using forced swimming protocol, while the relief of depression was induced using the rat voluntary running wheels. The depressive state of rats was evaluated by measuring the immobility duration and the serum corticosterone level. The immune expression was evaluated by measuring the optical densities (ODs) using ImageJ software, and the gene expression levels were investigated. In the depression group, the convoluted ducts appeared dilated with numerous secretory granules. The number of PCNA-stained cells was significantly decreased in the depression group as compared to control group and then significantly increased in the depression-exercise group when compared to the depression group with a negative correlation to stress indicator. The ODs of immuno-expression for the brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) increased significantly in the depression group as compared to control group. Both BDNF and VEGF immuno-expression displayed positive correlation with the stress indicators. Both BDNF and VEGF gene expression results confirmed their immunohistochemical results. The findings of this study explored the role of submandibular gland in secreting neurotrophic factors and raise a flag for the possibility of using salivary secretions as dependable and easy parameter for estimation of chronic stressed patients.Mini AbstractThe submandibular gland neurotrophic factors immuno-expression can be used in estimating chronic depressive disorders as they are correlated with stress indicators during and after the relief of depression.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Ratas , Masculino , Animales , Ratas Wistar , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Regulación hacia Arriba , Glándula Submandibular , Hipocampo/metabolismo , Estrés Psicológico/metabolismoRESUMEN
The potential reproductive toxic effects of oral TiO2 NPs in adult male rats as well as the possible alleviation of chitosan administration was investigated. Animals were allocated to four groups; the first group received deionized water and was assigned as a control group. In the second group, rats received chitosan at a dose of 5 mg/kg BW/day. The third group was designed for administration of TiO2 NPs at a dose of 150 mg/kg BW/day (1/80 LD50). Rats in the fourth group received both TiO2 NPs and chitosan. After 14 days, TiO2 NPs induced testicular lipid peroxidation as well as oxidative stress. Nano-titanium significantly upregulated genes that encode apoptosis and inflammation in testicular tissue. Moreover, it induced histological alteration in the testicular structure with impairment in spermatogenesis via reduction of PCNA immune-staining. Chitosan administration significantly improved the activities of testicular GPx, SOD, and CAT enzymes. In addition, it significantly down-regulated the relative expressions of pro-apoptotic and pro-inflammatory testicular genes. Chitosan was able to improve the testicular architecture as well as spermatogenesis. The current study revealed the capability of chitosan to ameliorate nano-titanium induced testicular toxicity. Thus, attention should be given to the extensive consumption of nano-titanium particles.
Asunto(s)
Quitosano , Nanopartículas , Enfermedades Testiculares , Humanos , Masculino , Ratas , Animales , Titanio/química , Enfermedades Testiculares/inducido químicamenteRESUMEN
The peri-implantation period of pregnancy is critical for conceptus development, implantation, and signaling for establishment of pregnancy. This study evaluated the effects of bisphenol A (BPA) on proliferation, adhesion, and migration of porcine trophectoderm (pTr2) cells, expression of transporters of arginine and synthesis of amino acids. All concentrations of BPA decreased proliferation and adhesion of pTr2 cells after 96 h compared to the control group. Lower concentrations of BPA (1 × 10-9, 1 × 10-8, 10-7M) increased (P < 0.05), but higher concentrations of BPA (1 × 10-5, 1 × 10-4 M) decreased migration of pTr2 cells. BPA increased expression of SLC7A1 mRNA at lower concentrations (1 × 10-9 to 1 × 10-6M) and SL7A6, another cationic acid transporter, at higher concentrations (1 × 10-5, 1 × 10-4 M). BPA also down-regulated the expression of IGF1 and IGF1 receptor at concentrations of 1 × 10-7 to 1 × 10-4 M compared to the control group. The expression of mRNAs for aquaporins (AQP) 3 and 4 were reduced at all concentrations of BPA, but at lower concentrations of BPA, (1 × 10-9 to 1 × 10-8M) expression of AQP9 mRNA increased and the expression of AQP11 was not affected by BPA (P > 0.05). There was an inhibitory effect of BPA on the release of synthesis of asparagine, threonine, taurine, tryptophan, and ornithine into the culture medium by pTr2 cells. Collectively, BPA adversely affected the expression of transporters for cationic amino acids like arginine, as well as AQPs, IGF1, and IGF1R associated with proliferation, migration, and adhesion of pTr2 cells. Those adverse effects would likely increase pregnancy losses during the peri-implantation period of pregnancy.
Asunto(s)
Compuestos de Bencidrilo/toxicidad , Blastocisto/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Aminoácidos/metabolismo , Animales , Acuaporinas/genética , Blastocisto/metabolismo , Blastocisto/fisiología , Adhesión Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/genética , Receptor IGF Tipo 1/genética , PorcinosRESUMEN
The human 15q13.3 microdeletion syndrome (DS) is caused by a heterozygous microdeletion (MD) affecting six genes: FAN1; MTMR10; TRPM1; KLF13; OTUD7A; and CHRNA7. Carriers are at risk for intellectual disability, epilepsy, autism spectrum disorder, and schizophrenia. Here we used the Df[h15q13]/+ mouse model with an orthologous deletion to further characterize molecular, neurophysiological, and behavioral parameters that are relevant to the 15q13.3 DS. First, we verified the expression and distribution of the α7 nicotinic acetylcholine receptor (nAChR), a gene product of the CHRNA7, in cortical and subcortical areas. Results revealed similar mRNA distribution pattern in wildtype (WT) and heterozygous (Het) mice, with about half the number of α7 nAChR binding sites in mutants. Hippocampal recordings showed similar input/output responses of field excitatory post-synaptic potentials and theta-burst induced long-term potentiation in WT and Het mice. Het males exhibited impaired spatial learning acquisition in the Barnes Maze. Indicative of increased seizure susceptibility, Het mice developed secondary seizures after 6-Hz corneal stimulation, and had significantly increased sensitivity to the chemoconvulsant pentylenetetrazol resulting in increased spiking in hippocampal EEG recordings. Basal mRNA expression of brain derived neurotrophic factor and activity regulated immediate early genes (c-fos, Arc, Erg-1 and Npas4) during adolescence, a critical period of brain maturation, was unaffected by genotype. Thus, the MD did not show gross neuroanatomical, molecular, and neurophysiological abnormalities despite deficits in spatial learning and increased susceptibility to seizures. Altogether, our results verify the phenotypic profile of the heterozygous Df[h15q13]/+ mouse model and underscore its translational relevance for human 15q13.3 DS.
Asunto(s)
Deleción Cromosómica , Trastornos de los Cromosomas , Modelos Animales de Enfermedad , Discapacidad Intelectual , Convulsiones , Animales , Cromosomas Humanos Par 15 , Heterocigoto , Humanos , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Bisphenol A (BPA) is an endocrine-disrupting chemical used in the manufacture of many products used daily. In the present study, the effects of BPA (1 × 10-4 to 1 × 10-9 M) on migration and on the expression of some apoptotic genes were examined in vitro using ovine trophectoderm (oTr1) primary cell line. The results revealed that BPA at 1 × 10-9, 1 × 10-8 and 1 × 10-7M increased migration of oTr1 cells, while 1 × 10-6, 1 × 10-5 and 1 × 10-4 M BPA decreased cell migration. Regarding apoptosis, expression of the anti-apoptotic gene Bcl-2 mRNA was greater at 1 × 10-8 and 1 × 10-9 M BPA and was down-regulated at 1 × 10-4 to 1 × 10-7 M BPA; however, expression of pro-apoptotic genes (Bax, cathepsin B, caspase-3 and c-myc) was reduced at the higher concentrations of BPA. Results of this study suggest that BPA may impair implantation by decreasing migration of oTr1 cells and inhibiting apoptosis.
Asunto(s)
Compuestos de Bencidrilo/toxicidad , Implantación del Embrión/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Femenino , Embarazo , OvinosRESUMEN
Maternal smoking has negative long-term consequences on affective behaviors, and in rodents, chronic neonatal nicotine exposure (CNN) results in increased anxiety. In rat pups, acute nicotine stimulation activates brain regions associated with stress and anxiety, but chronic nicotine exposure could desensitize of nicotinic acetylcholine receptors, the molecular target of nicotine. Here, we determined whether CNN affected neuronal activation by an acute nicotine challenge. Using in situ hybridization, we analyzed mRNA expression of the immediate-early genes (IEGs) c-Fos, Arc, Egr-1 and Npas4, which are markers for neuronal activation and implicated in synaptic plasticity. Following CNN (6 mg/kg/day) or control treatment from postnatal day (P)1 to P7, an acute i.p. nicotine (0.7â¯mg/kg) or saline injection (control) was administered on P8, and brains collected after 30â¯min. In drug-naive pups, acute nicotine stimulated IEGs expression specifically in brain areas associated with innate anxiety including the paraventricular hypothalamic nucleus, central nucleus of the amygdala (CeA), and locus coeruleus (LC). Following CNN, acute nicotine stimulated IEG expression in all three areas, but activation was significantly reduced in the LC (c-Fos, Egr-1, Npas4), and CeA (c-Fos). Notably, nicotine-induced Npas4 expression was greatly diminished in the LC, which may affect inhibitory synapse formation in noradrenergic neurons. Thus, after CNN, neurons located in areas associated with anxiety brain circuitry maintained responsiveness to nicotine, but tolerance differentially developed to nicotine. In the developing brain, repeated activation by nicotine of areas related to limbic pathways could alter circuit connectivity and increase responsiveness to stress and anxiety later in life.
Asunto(s)
Encéfalo/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Inmediatas-Precoces/metabolismo , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Animales , Animales Recién Nacidos , Ansiedad/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Proteínas Inmediatas-Precoces/genética , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/metabolismo , Ratas , Estrés Psicológico/genéticaRESUMEN
This study evaluated the effects of bisphenol A (BPA) on proliferation of ovine trophectoderm (oTr1) cells, as well as expression of genes for transport of arginine and synthesis of polyamines. BPA reduced proliferation of oTr1 cells at concentrations of 1â¯×â¯10-6, 1â¯×â¯10-5, 1â¯×â¯10-4â¯M compared to concentrations of 0, 1â¯×â¯10-9, and 1â¯×â¯10-8â¯M at 24 and 96â¯h of culture. Lower concentrations of BPA significantly increased expression of mRNAs for agmatinase (AGMAT), arginine decarboxylase (ADC), ornithine decarboxylase (ODC1) and solute carrier family 7 member 1 (SLC7A1). Similarly, synthesis of polyamines by oTr1 cells was greatest at lower concentrations of BPA and decreased as the dose of BPA increased. Expression of mRNAs for interferon tau (IFNT) and insulin-like growth factor 2 (IGF2) by oTr1 cells was greater than for controls at 1â¯×â¯10-9â¯M BPA. Overall, the effects of BPA on proliferation and gene expression by oTr1 cells were highly dose-dependent.
Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Trofoblastos/efectos de los fármacos , Animales , Arginina/metabolismo , Carboxiliasas/genética , Transportador de Aminoácidos Catiónicos 1/genética , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Factor II del Crecimiento Similar a la Insulina/genética , Interferón Tipo I/genética , Ornitina Descarboxilasa/genética , Poliaminas/metabolismo , Proteínas Gestacionales/genética , ARN Mensajero/metabolismo , Ovinos , Trofoblastos/metabolismo , Ureohidrolasas/genéticaRESUMEN
Deoxynivalenol (DON) is one of the most important trichothecenes, due to its worldwide distribution and common contamination of animal feed. It mainly affects the gastrointestinal tract and the immune system with a high susceptibility for swine. Lipopolysaccharides (LPS) are endotoxins and are part of the outer membrane of most gram-negative bacteria. They induce inflammatory responses under systemic application. We hypothesised that dietary DON as well as LPS challenge could affect the transport of DON in vitro. For assessment of this hypothesis, a total of 16 pigs were divided into two groups, Control and DON-feeding. In each group, four animals were injected intraperitoneally with LPS (5 µg/kg BW). Jejunal preparations were mounted on the Ussing chambers, and after luminal addition of DON at two different concentrations (4000 and 8000 ng/ml), buffer samples were collected at different time points to measure the concentration of DON using LC-MS/MS analysis. Our findings revealed a significant interaction effect between dietary DON and DON in vitro represented by higher mucosal uptake of DON in DON-fed animals. Animals challenged with LPS showed higher mucosal uptake but without significant effect of LPS. We concluded that the transport of DON was proportional to its concentration and DON in feed could have an effect on the transport of DON across porcine jejunal mucosa. LPS challenge induced no apparent significant effect on DON transport, although induction of acute phase reaction was present.
Asunto(s)
Transporte Biológico/fisiología , Intestino Delgado/metabolismo , Porcinos/metabolismo , Tricotecenos/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Lipopolisacáridos/química , Masculino , Porcinos/sangre , Tricotecenos/sangre , Factor de Necrosis Tumoral alfa , Aumento de PesoRESUMEN
Deoxynivalenol (DON) is a major B-trichothecene that draws importance from its natural occurrence in cereals worldwide. It has many effects on rapidly dividing cells. Lipopolysaccharide (LPS) is an endotoxin released from most Gram-negative bacteria, which plays a major role in induction of inflammation and sepsis under certain conditions. In our experiments we aimed to study the effects of different concentrations of DON (up to 8,000 ng/ml) on the electrogenic transport of nutrients and on tissue conductances in growing pigs using the Ussing chamber technique. The effect of DON-contaminated feed (2.9 mg/kg feed) on the respective parameters, as well as the interactions between DON and intraperitoneal (i.p.) LPS were assessed using porcine jejunal tissues. In vitro DON inhibited the absorption of alanine and glucose across the pig jejunum at concentrations of 4,000 and 8,000 ng/ml, suggesting that DON had an inhibitory effect on the electrogenic transport of nutrients across porcine small intestines. Electrogenic transport of alanine and glucose across porcine small intestines varied regionally among intestinal segments with higher response in ileal tissues. A synergistic effect was observed between DON in feed and injected LPS on tissue conductance. In response, glucose with higher short circuit currents was observed across porcine jejunal mucosa in nutrient stimulated conditions.