Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nature ; 535(7613): 542-6, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27437584

RESUMEN

The transition from fins to limbs was an important terrestrial adaptation, but how this crucial evolutionary shift arose developmentally is unknown. Current models focus on the distinct roles of the apical ectodermal ridge (AER) and the signaling molecules that it secretes during limb and fin outgrowth. In contrast to the limb AER, the AER of the fin rapidly transitions into the apical fold and in the process shuts off AER-derived signals that stimulate proliferation of the precursors of the appendicular skeleton. The differing fates of the AER during fish and tetrapod development have led to the speculation that fin-fold formation was one of the evolutionary hurdles to the AER-dependent expansion of the fin mesenchyme required to generate the increased appendicular structure evident within limbs. Consequently, a heterochronic shift in the AER-to-apical-fold transition has been postulated to be crucial for limb evolution. The ability to test this model has been hampered by a lack of understanding of the mechanisms controlling apical fold induction. Here we show that invasion by cells of a newly identified somite-derived lineage into the AER in zebrafish regulates apical fold induction. Ablation of these cells inhibits apical fold formation, prolongs AER activity and increases the amount of fin bud mesenchyme, suggesting that these cells could provide the timing mechanism proposed in Thorogood's clock model of the fin-to-limb transition. We further demonstrate that apical-fold inducing cells are progressively lost during gnathostome evolution;the absence of such cells within the tetrapod limb suggests that their loss may have been a necessary prelude to the attainment of limb-like structures in Devonian sarcopterygian fish.


Asunto(s)
Aletas de Animales/embriología , Aletas de Animales/metabolismo , Ectodermo/embriología , Ectodermo/metabolismo , Somitos/embriología , Somitos/metabolismo , Pez Cebra/embriología , Animales , Evolución Biológica , Linaje de la Célula , Ectodermo/citología , Femenino , Esbozos de los Miembros/citología , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Somitos/citología
2.
PLoS Biol ; 16(4): e2005473, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29621251

RESUMEN

We describe the development and application of a suite of modular tools for high-resolution detection of proteins and intracellular protein complexes by electron microscopy (EM). Conditionally stable GFP- and mCherry-binding nanobodies (termed csGBP and csChBP, respectively) are characterized using a cell-free expression and analysis system and subsequently fused to an ascorbate peroxidase (APEX) enzyme. Expression of these cassettes alongside fluorescently labelled proteins results in recruitment and stabilisation of APEX, whereas unbound APEX nanobodies are efficiently degraded by the proteasome. This greatly simplifies correlative analyses, enables detection of less-abundant proteins, and eliminates the need to balance expression levels between fluorescently labelled and APEX nanobody proteins. Furthermore, we demonstrate the application of this system to bimolecular complementation ('EM split-fluorescent protein'), for localisation of protein-protein interactions at the ultrastructural level.


Asunto(s)
Ascorbato Peroxidasas/genética , Células Epiteliales/ultraestructura , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Imagen Individual de Molécula/métodos , Anticuerpos de Dominio Único/química , Animales , Ascorbato Peroxidasas/metabolismo , Línea Celular , Sistema Libre de Células , Cricetulus , Células Epiteliales/metabolismo , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Dominio Único/biosíntesis , Anticuerpos de Dominio Único/genética , Proteína Fluorescente Roja
3.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30021837

RESUMEN

Caveolae are plasma membrane invaginations involved in transport, signalling and mechanical membrane sensing in metazoans. Their formation depends upon multiple interactions between membrane-embedded caveolins, lipids and cytosolic cavin proteins. Of the four cavin family members, only cavin1 is strictly required for caveola formation. Here, we demonstrate that an eleven residue (undecad) repeat sequence (UC1) exclusive to cavin1 is essential for caveolar localization and promotes membrane remodelling through binding to phosphatidylserine. In the notochord of mechanically stimulated zebrafish embryos, the UC1 domain is required for caveolar stability and resistance to membrane stress. The number of undecad repeats in the cavin1 UC1 domain varies throughout evolution, and we find that an increased number also correlates with increased caveolar stability. Lastly, we show that the cavin1 UC1 domain induces dramatic remodelling of the plasma membrane when grafted into cavin2 suggesting an important role in membrane sculpting. Overall, our work defines a novel conserved cavin1 modular domain that controls caveolar assembly and stability.


Asunto(s)
Caveolas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Análisis Mutacional de ADN , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células MCF-7 , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Notocorda/metabolismo , Células PC-3 , Proteínas de Unión a Fosfato , Proteínas de Unión al ARN/química , Estrés Mecánico , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
4.
Dev Dyn ; 248(4): 284-295, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30801852

RESUMEN

BACKGROUND: During heart morphogenesis, the cardiac chambers undergo ballooning: a process involving regionalized elongation of cardiomyocytes. Cardiomyocyte shape changes require reorganization of the actin cytoskeleton; however, the genetic regulation of this process is not well understood. RESULTS: From a forward genetic screen, we identified the zebrafish uq 23ks mutant which manifests chamber ballooning defects. Whole-genome sequencing-mapping identified a truncating mutation in the gene, myo5b. myo5b encodes an atypical myosin required for endosome recycling and, consistent with this, increased vesicles were observed in myo5b mutant cardiomyocytes. Expression of RFP-Rab11a (a recycling endosome marker) confirmed increased recycling endosomes in cardiomyocytes of myo5b mutants. To investigate potential cargo of MyoVb-associated vesicles, we examined the adherens junction protein, N-cadherin. N-cadherin appeared mispatterned at cell junctions, and an increase in the number of intracellular particles was also apparent. Co-localization with RFP-Rab11a confirmed increased N-cadherin-positive recycling endosomes, demonstrating N-cadherin trafficking is perturbed in myo5b mutants. Finally, phalloidin staining showed disorganized F-actin in myo5b cardiomyocytes, suggesting the cytoskeleton fails to remodel, obstructing chamber ballooning. CONCLUSIONS: MyoVb is required for cardiomyocyte endosomal recycling and appropriate N-cadherin localization during the onset of chamber ballooning. Cardiomyocytes lacking MyoVb are unable to reorganize their actin cytoskeleton, resulting in failed chamber ballooning. Developmental Dynamics 248:284-295, 2019. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Cadherinas/metabolismo , Citoesqueleto/ultraestructura , Corazón/crecimiento & desarrollo , Miocitos Cardíacos/metabolismo , Miosina Tipo V/fisiología , Animales , Forma de la Célula , Citoesqueleto/metabolismo , Endosomas/metabolismo , Humanos , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/ultraestructura , Miosina Tipo V/genética , Miosinas/genética , Miosinas/fisiología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
5.
Acta Neuropathol ; 130(3): 389-406, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25931053

RESUMEN

Nemaline myopathy is characterized by muscle weakness and the presence of rod-like (nemaline) bodies. The genetic etiology of nemaline myopathy is becoming increasingly understood with mutations in ten genes now known to cause the disease. Despite this, the mechanism by which skeletal muscle weakness occurs remains elusive, with previous studies showing no correlation between the frequency of nemaline bodies and disease severity. To investigate the formation of nemaline bodies and their role in pathogenesis, we generated overexpression and loss-of-function zebrafish models for skeletal muscle α-actin (ACTA1) and nebulin (NEB). We identify three distinct types of nemaline bodies and visualize their formation in vivo, demonstrating these nemaline bodies not only exhibit different subcellular origins, but also have distinct pathological consequences within the skeletal muscle. One subtype is highly dynamic and upon breakdown leads to the accumulation of cytoplasmic actin contributing to muscle weakness. Examination of a Neb-deficient model suggests this mechanism may be common in nemaline myopathy. Another subtype results from a reduction of actin and forms a more stable cytoplasmic body. In contrast, the final type originates at the Z-disk and is associated with myofibrillar disorganization. Analysis of zebrafish and muscle biopsies from ACTA1 nemaline myopathy patients demonstrates that nemaline bodies also possess a different protein signature. In addition, we show that the ACTA1(D286G) mutation causes impaired actin incorporation and localization in the sarcomere. Together these data provide a novel examination of nemaline body origins and dynamics in vivo and identifies pathological changes that correlate with muscle weakness.


Asunto(s)
Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Miopatías Nemalínicas/patología , Miopatías Nemalínicas/fisiopatología , Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Citoplasma/metabolismo , Citoplasma/patología , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Morfolinos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Debilidad Muscular/patología , Debilidad Muscular/fisiopatología , Mutación , Fenotipo , Sarcómeros/metabolismo , Sarcómeros/patología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
PLoS Genet ; 8(10): e1003014, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133395

RESUMEN

One of the central questions of developmental biology is how cells of equivalent potential-an equivalence group-come to adopt specific cellular fates. In this study we have used a combination of live imaging, single cell lineage analyses, and perturbation of specific signaling pathways to dissect the specification of the adaxial cells of the zebrafish embryo. We show that the adaxial cells are myogenic precursors that form a cell fate equivalence group of approximately 20 cells that consequently give rise to two distinct sub-types of muscle fibers: the superficial slow muscle fibers (SSFs) and muscle pioneer cells (MPs), distinguished by specific gene expression and cell behaviors. Using a combination of live imaging, retrospective and indicative fate mapping, and genetic studies, we show that MP and SSF precursors segregate at the beginning of segmentation and that they arise from distinct regions along the anterior-posterior (AP) and dorsal-ventral (DV) axes of the adaxial cell compartment. FGF signaling restricts MP cell fate in the anterior-most adaxial cells in each somite, while BMP signaling restricts this fate to the middle of the DV axis. Thus our results reveal that the synergistic actions of HH, FGF, and BMP signaling independently create a three-dimensional (3D) signaling milieu that coordinates cell fate within the adaxial cell equivalence group.


Asunto(s)
Diferenciación Celular , Morfogénesis , Fibras Musculares de Contracción Lenta/citología , Fibras Musculares de Contracción Lenta/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Proteínas Morfogenéticas Óseas/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Factor 6 de Diferenciación de Crecimiento/metabolismo , Proteínas Hedgehog/metabolismo , Morfogénesis/genética , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Hum Mol Genet ; 21(21): 4718-31, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22859503

RESUMEN

Laminins form essential components of the basement membrane and are integral to forming and maintaining muscle integrity. Mutations in the human Laminin-alpha2 (LAMA2) gene result in the most common form of congenital muscular dystrophy, MDC1A. We have previously identified a zebrafish model of MDC1A called candyfloss (caf), carrying a loss-of-function mutation in the zebrafish lama2 gene. In the skeletal muscle, laminins connect the muscle cell to the extracellular matrix (ECM) by binding either dystroglycan or integrins at the cell membrane. Through epistasis experiments, we have established that both adhesion systems individually contribute to the maintenance of fibre adhesions and exhibit muscle detachment phenotypes. However, larval zebrafish in which both adhesion systems are simultaneously genetically inactivated possess a catastrophic failure of muscle attachment that is far greater than a simple addition of individual phenotypes would predict. We provide evidence that this is due to other crucial laminins present in addition to Lama2, which aid muscle cell attachments and integrity. We have found that lama1 is important for maintaining attachments, whereas lama4 is localized and up-regulated in damaged fibres, which appears to contribute to fibre survival. Importantly, our results show that endogenous secretion of laminins from the surrounding tissues has the potential to reinforce fibre attachments and strengthen laminin-ECM attachments. Collectively these findings provide a better understanding of the cellular pathology of MDC1A and help in designing effective therapies.


Asunto(s)
Epistasis Genética , Laminina , Desarrollo de Músculos/genética , Músculo Esquelético , Proteínas de Pez Cebra , Animales , Distroglicanos/metabolismo , Matriz Extracelular/metabolismo , Humanos , Laminina/genética , Laminina/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/fisiopatología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Unión Proteica , Receptores de Laminina/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
PLoS Biol ; 9(10): e1001168, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21990962

RESUMEN

Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition.


Asunto(s)
Aletas de Animales/crecimiento & desarrollo , Evolución Biológica , Peces/crecimiento & desarrollo , Desarrollo de Músculos , Pelvis/crecimiento & desarrollo , Aletas de Animales/anatomía & histología , Animales , Animales Modificados Genéticamente , Peces/genética , Pelvis/anatomía & histología , Filogenia , Somitos/trasplante , Especificidad de la Especie
9.
JCI Insight ; 9(8)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530354

RESUMEN

Skeletal muscle wasting results from numerous pathological conditions affecting both the musculoskeletal and nervous systems. A unifying feature of these pathologies is the upregulation of members of the E3 ubiquitin ligase family, resulting in increased proteolytic degradation of target proteins. Despite the critical role of E3 ubiquitin ligases in regulating muscle mass, the specific proteins they target for degradation and the mechanisms by which they regulate skeletal muscle homeostasis remain ill-defined. Here, using zebrafish loss-of-function models combined with in vivo cell biology and proteomic approaches, we reveal a role of atrogin-1 in regulating the levels of the endoplasmic reticulum chaperone BiP. Loss of atrogin-1 resulted in an accumulation of BiP, leading to impaired mitochondrial dynamics and a subsequent loss in muscle fiber integrity. We further implicated a disruption in atrogin-1-mediated BiP regulation in the pathogenesis of Duchenne muscular dystrophy. We revealed that BiP was not only upregulated in Duchenne muscular dystrophy, but its inhibition using pharmacological strategies, or by upregulating atrogin-1, significantly ameliorated pathology in a zebrafish model of Duchenne muscular dystrophy. Collectively, our data implicate atrogin-1 and BiP in the pathogenesis of Duchenne muscular dystrophy and highlight atrogin-1's essential role in maintaining muscle homeostasis.


Asunto(s)
Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Homeostasis , Proteínas Musculares , Músculo Esquelético , Distrofia Muscular de Duchenne , Proteínas Ligasas SKP Cullina F-box , Pez Cebra , Animales , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/genética , Humanos , Chaperón BiP del Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Retículo Endoplásmico/metabolismo , Dinámicas Mitocondriales
10.
J Neurosci ; 32(22): 7477-92, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22649227

RESUMEN

Adult zebrafish show a remarkable capacity to regenerate their spinal column after injury, an ability that stands in stark contrast to the limited repair that occurs within the mammalian CNS post-injury. The reasons for this interspecies difference in regenerative capacity remain unclear. Here we demonstrate a novel role for Fgf signaling during glial cell morphogenesis in promoting axonal regeneration after spinal cord injury. Zebrafish glia are induced by Fgf signaling, to form an elongated bipolar morphology that forms a bridge between the two sides of the resected spinal cord, over which regenerating axons actively migrate. Loss of Fgf function inhibits formation of this "glial bridge" and prevents axon regeneration. Despite the poor potential for mammalian axonal regeneration, primate astrocytes activated by Fgf signaling adopt a similar morphology to that induced in zebrafish glia. This suggests that differential Fgf regulation, rather than intrinsic cell differences, underlie the distinct responses of mammalian and zebrafish glia to injury.


Asunto(s)
Regeneración Nerviosa/fisiología , Neuroglía/fisiología , Transducción de Señal/genética , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Bromodesoxiuridina/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Dextranos , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Antígeno Ki-67/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Regeneración Nerviosa/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neuroglía/efectos de los fármacos , Pirroles/farmacología , ARN Mensajero , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Recuperación de la Función , Rodaminas , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Dev Biol ; 368(2): 193-202, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22609552

RESUMEN

The Hedgehog (HH) signaling pathway is a central regulator of embryonic development, controlling the pattern and proliferation of a wide variety of organs. Previous studies have implicated the secreted protein, Scube2, in HH signal transduction in the zebrafish embryo (Hollway et al., 2006; Kawakami et al., 2005; Woods and Talbot, 2005) although the nature of the molecular function of Scube2 in this process has remained undefined. This analysis has been compounded by the fact that removal of Scube2 activity in the zebrafish embryo leads to only subtle defects in HH signal transduction in vivo (Barresi et al., 2000; Hollway et al., 2006; Ochi and Westerfield, 2007; van Eeden et al., 1996; Wolff et al., 2003). Here we present the discovery of two additional scube genes in zebrafish, scube1 and scube3, and demonstrate their roles in facilitating HH signal transduction. Knocking down the function of all three scube genes simultaneously phenocopies a complete loss of HH signal transduction in the embryo, revealing that Scube signaling is essential for HH signal transduction in vivo. We further define the molecular role of scube2 in HH signaling.


Asunto(s)
Proteínas de Unión al Calcio/genética , Embrión no Mamífero/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas Hedgehog/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/genética , Animales , Western Blotting , Células COS , Proteínas de Unión al Calcio/metabolismo , Chlorocebus aethiops , ADN Complementario/química , ADN Complementario/genética , Embrión no Mamífero/embriología , Proteínas de la Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Hedgehog/metabolismo , Hibridación in Situ , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Fenotipo , Análisis de Secuencia de ADN , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
12.
Front Physiol ; 14: 1221310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601640

RESUMEN

We recently introduced the Cre/Lox technology in our laboratory for both transient (mRNA injections) and stable/transgenic experiments. We experienced significant issues such as silencing, mosaicism, and partial recombination using both approaches. Reviewing the literature gave us the impression that these issues are common among the zebrafish community using the Cre/Lox system. While some researchers took advantage of these problems for specific applications, such as cell and lineage tracing using the Zebrabow construct, we tried here to improve the efficiency and reliability of this system by constituting and testing a new set of tools for zebrafish genetics. First, we implemented a codon-improved Cre version (iCre) designed for rodent studies to counteract some of the aforementioned problems. This eukaryotic-like iCre version was engineered to i) reduce silencing, ii) increase mRNA stability, iii) enhance translational efficiency, and iv) improve nuclear translocation. Second, we established a new set of tol2-kit compatible vectors to facilitate the generation of either iCre-mRNA or iCre-transgenes for transient and transgenic experiments, respectively. We then validated the use of this material and are providing tips for users. Interestingly, during the validation steps, we found that maternal iCRE-mRNA and/or protein deposition from female transgenics systematically led to complete/homogeneous conversion of all tested Lox-responder-transgenes, as opposed to some residual imperfect conversion when using males-drivers or mRNA injections. Considering that we did not find any evidence of Cre-protein soaking and injections in the literature as it is usually conducted with cells, we tested these approaches. While soaking of cell-permeant CRE-protein did not lead to any detectable Lox-conversion, 1ng-10 ng protein injections led to robust and homogeneous Lox-recombination, suggesting that the use of protein could be a robust option for exogenous delivery. This approach may be particularly useful to manipulate housekeeping genes involved in development, sex determination and reproduction which are difficult to investigate with traditional knockout approaches. All in all, we are providing here a new set of tools that should be useful in the field.

13.
Curr Biol ; 33(19): 4276-4284.e4, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37729911

RESUMEN

Plasma membrane rupture can result in catastrophic cell death. The skeletal muscle fiber plasma membrane, the sarcolemma, provides an extreme example of a membrane subject to mechanical stress since these cells specifically evolved to generate contraction and movement. A quantitative model correlating ultrastructural remodeling of surface architecture with tissue changes in vivo is required to understand how membrane domains contribute to the shape changes associated with tissue deformation in whole animals. We and others have shown that loss of caveolae, small invaginations of the plasma membrane particularly prevalent in the muscle sarcolemma, renders the plasma membrane more susceptible to rupture during stretch.1,2,3 While it is thought that caveolae are able to flatten and be absorbed into the bulk membrane to buffer local membrane expansion, a direct demonstration of this model in vivo has been unachievable since it would require measurement of caveolae at the nanoscale combined with detailed whole-animal morphometrics under conditions of perturbation. Here, we describe the development and application of the "active trapping model" where embryonic zebrafish are immobilized in a curved state that mimics natural body axis curvature during an escape response. The model is amenable to multiscale, multimodal imaging including high-resolution whole-animal three-dimensional quantitative electron microscopy. Using the active trapping model, we demonstrate the essential role of caveolae in maintaining sarcolemmal integrity and quantify the specific contribution of caveolar-derived membrane to surface expansion. We show that caveolae directly contribute to an increase in plasma membrane surface area under physiologically relevant membrane deformation conditions.


Asunto(s)
Caveolas , Pez Cebra , Animales , Membrana Celular , Caveolas/metabolismo , Fibras Musculares Esqueléticas , Microscopía Electrónica
14.
Dev Cell ; 58(5): 376-397.e4, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36858041

RESUMEN

Caveolae have been linked to many biological functions, but their precise roles are unclear. Using quantitative whole-cell proteomics of genome-edited cells, we show that the oxidative stress response is the major pathway dysregulated in cells lacking the key caveola structural protein, CAVIN1. CAVIN1 deletion compromised sensitivity to oxidative stress in cultured cells and in animals. Wound-induced accumulation of reactive oxygen species and apoptosis were suppressed in Cavin1-null zebrafish, negatively affecting regeneration. Oxidative stress triggered lipid peroxidation and induced caveolar disassembly. The resulting release of CAVIN1 from caveolae allowed direct interaction between CAVIN1 and NRF2, a key regulator of the antioxidant response, facilitating NRF2 degradation. CAVIN1-null cells with impaired negative regulation of NRF2 showed resistance to lipid-peroxidation-induced ferroptosis. Thus, caveolae, via lipid peroxidation and CAVIN1 release, maintain cellular susceptibility to oxidative-stress-induced cell death, demonstrating a crucial role for this organelle in cellular homeostasis and wound response.


Asunto(s)
Caveolas , Factor 2 Relacionado con NF-E2 , Animales , Caveolas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Pez Cebra/metabolismo , Peroxidación de Lípido , Proteínas de Unión al ARN/metabolismo , Estrés Oxidativo
15.
Elife ; 122023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36648336

RESUMEN

The nucleoporin (NUP) ELYS, encoded by AHCTF1, is a large multifunctional protein with essential roles in nuclear pore assembly and mitosis. Using both larval and adult zebrafish models of hepatocellular carcinoma (HCC), in which the expression of an inducible mutant kras transgene (krasG12V) drives hepatocyte-specific hyperplasia and liver enlargement, we show that reducing ahctf1 gene dosage by 50% markedly decreases liver volume, while non-hyperplastic tissues are unaffected. We demonstrate that in the context of cancer, ahctf1 heterozygosity impairs nuclear pore formation, mitotic spindle assembly, and chromosome segregation, leading to DNA damage and activation of a Tp53-dependent transcriptional programme that induces cell death and cell cycle arrest. Heterozygous expression of both ahctf1 and ranbp2 (encoding a second nucleoporin), or treatment of heterozygous ahctf1 larvae with the nucleocytoplasmic transport inhibitor, Selinexor, completely blocks krasG12V-driven hepatocyte hyperplasia. Gene expression analysis of patient samples in the liver hepatocellular carcinoma (LIHC) dataset in The Cancer Genome Atlas shows that high expression of one or more of the transcripts encoding the 10 components of the NUP107-160 subcomplex, which includes AHCTF1, is positively correlated with worse overall survival. These results provide a strong and feasible rationale for the development of novel cancer therapeutics that target ELYS function and suggest potential avenues for effective combinatorial treatments.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Hiperplasia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
16.
Dev Cell ; 12(2): 207-19, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17276339

RESUMEN

Somites are transient, mesodermally derived structures that give rise to a number of different cell types within the vertebrate embryo. To achieve this, somitic cells are partitioned into lineage-restricted domains, whose fates are determined by signals secreted from adjacent tissues. While the molecular nature of many of the inductive signals that trigger formation of different cell fates within the nascent somite has been identified, less is known about the processes that coordinate the formation of the subsomitic compartments from which these cells arise. Utilizing a combination of vital dye-staining and lineage-tracking techniques, we describe a previously uncharacterized, lineage-restricted compartment of the zebrafish somite that generates muscle progenitor cells for the growth of appendicular, hypaxial, and axial muscles during development. We also show that formation of this compartment occurs via whole-somite rotation, a process that requires the action of the Sdf family of secreted cytokines.


Asunto(s)
Tipificación del Cuerpo/fisiología , Compartimento Celular , Embrión no Mamífero/citología , Células Musculares/citología , Somitos/fisiología , Células Madre/citología , Pez Cebra/embriología , Animales , Linaje de la Célula , Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica , Células Musculares/metabolismo , Factor de Transcripción PAX7/metabolismo , Rotación , Transducción de Señal , Somitos/citología , Células Madre/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Development ; 136(19): 3367-76, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19736328

RESUMEN

The skeletal muscle basement membrane fulfils several crucial functions during development and in the mature myotome and defects in its composition underlie certain forms of muscular dystrophy. A major component of this extracellular structure is the laminin polymer, which assembles into a resilient meshwork that protects the sarcolemma during contraction. Here we describe a zebrafish mutant, softy, which displays severe embryonic muscle degeneration as a result of initial basement membrane failure. The softy phenotype is caused by a mutation in the lamb2 gene, identifying laminin beta2 as an essential component of this basement membrane. Uniquely, softy homozygotes are able to recover and survive to adulthood despite the loss of myofibre adhesion. We identify the formation of ectopic, stable basement membrane attachments as a novel means by which detached fibres are able to maintain viability. This demonstration of a muscular dystrophy model possessing innate fibre viability following muscle detachment suggests basement membrane augmentation as a therapeutic strategy to inhibit myofibre loss.


Asunto(s)
Laminina/genética , Laminina/fisiología , Distrofia Muscular Animal/embriología , Distrofia Muscular Animal/genética , Mutación , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Membrana Basal/patología , Supervivencia Celular , Cartilla de ADN/genética , Ojo/embriología , Homocigoto , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/patología , Distrofia Muscular Animal/patología , Sarcolema/patología , Homología de Secuencia de Aminoácido
18.
Dev Dyn ; 240(2): 422-31, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21246659

RESUMEN

Laminins are essential components of all basement membranes and are fundamental to tissue development and homeostasis. Humans possess at least 16 different heterotrimeric laminin complexes formed through different combinations of alpha, beta, and gamma chains. Individual chains appear to exhibit unique expression patterns, leading to the notion that overlap between expression domains governs the constitution of complexes found within particular tissues. However, the spatial and temporal expression of laminin genes has not been comprehensively analyzed in any vertebrate model to date. Here, we describe the tissue-specific expression patterns of all laminin genes in the zebrafish, throughout embryonic development and into the "post-juvenile" period, which is representative of the adult body form. In addition, we present phylogenetic and microsynteny analyses, which demonstrate that the majority of our zebrafish sequences are orthologous to human laminin genes. Together, these data represent a fundamental resource for the study of vertebrate laminins.


Asunto(s)
Evolución Biológica , Regulación del Desarrollo de la Expresión Génica , Laminina/genética , Familia de Multigenes , Isoformas de Proteínas/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Humanos , Hibridación in Situ , Laminina/clasificación , Laminina/metabolismo , Filogenia , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/metabolismo , Sintenía , Distribución Tisular , Pez Cebra/anatomía & histología
19.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34499171

RESUMEN

Here we describe a short feasibility study and methodological framework for the production of stable, CRISPR/Cas9-based, large genomic deletions in zebrafish, ranging from several base pairs (bp) to hundreds of kilobases (kb). Using a cocktail of four single guide RNAs (sgRNAs) targeting a single genomic region mixed with a marker-sgRNA against the pigmentation gene tyrosinase, we demonstrate that one can easily and accurately excise genomic regions such as promoters, protein domains, specific exons, or whole genes. We exemplify this technique with a complex gene family, neurexins, composed of three duplicated genes with multiple promoters and intricate splicing processes leading to thousands of isoforms. We precisely deleted small regions such as their transmembrane domains (150 bp deletion in average) to their entire genomic locus (300 kb deletion for nrxn1a for instance). We find that both the concentration and ratio of Cas9/sgRNAs are critical for the successful generation of these large deletions and, interestingly, that in our study, their transmission frequency does not seem to decrease with increasing distance between sgRNA target sites. Considering the growing reports and debate about genetically compensated small indel mutants, the use of large-deletion approaches is likely to be widely adopted in studies of gene function. This strategy will also be key to the study of non-coding genomic regions. Note that we are also describing here a custom method to produce the sgRNAs, which proved to be faster and more robust than the ones traditionally used in the community to date.


Asunto(s)
Sistemas CRISPR-Cas , Pez Cebra , Animales , Exones , Genómica , ARN Guía de Kinetoplastida/genética , Pez Cebra/genética
20.
Bio Protoc ; 11(19): e4178, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34722825

RESUMEN

Identification of protein interaction networks is key for understanding intricate biological processes, but mapping such networks is challenging with conventional biochemical methods, especially for weak or transient interactions. Proximity-dependent biotin labelling (BioID) using promiscuous biotin ligases and mass spectrometry (MS)-based proteomics has emerged in the past decade as a powerful method for probing local proteomes and protein interactors. Here, we describe the application of an engineered biotin ligase, TurboID, for proteomic mapping and interactor screening in vivo in zebrafish. We generated novel transgenic zebrafish lines that express TurboID fused to a conditionally stabilised GFP-binding nanobody, dGBP, which targets TurboID to the GFP-tagged proteins of interest. The TurboID-dGBP zebrafish lines enable proximity-dependent biotin labelling in live zebrafish simply through outcrossing with existing GFP-tagged lines. Here, we outline a detailed protocol of the BLITZ method (Biotin Labelling In Tagged Zebrafish) for utilising TurboID-dGBP fish lines to map local proteomes and screen novel interactors. Graphic abstract: Schematic overview of the BLITZ method. TurboID-dGBP fish are crossed with GFP-tagged lines to obtain embryos co-expressing TurboID-dGBP (indicated by mKate2) and the GFP-POI (protein of interest). Embryos expressing only TurboID are used as a negative control. Embryos (2 to 7 dpf) are incubated overnight with a 500 µM biotin-supplemented embryo medium. This biotin incubation step allows TurboID to catalyse proximity-dependent biotinylation in live zebrafish embryos. After biotin incubation, embryos are solubilised in lysis buffer, and free biotin is removed using a PD-10 desalting column. The biotinylated proteins are captured by streptavidin affinity purification, and captured proteins are analysed by MS sequencing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA