Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Biomacromolecules ; 25(5): 2965-2972, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38682378

RESUMEN

Nucleic acid therapeutics have attracted recent attention as promising preventative solutions for a broad range of diseases. Nonviral delivery vectors, such as cationic polymers, improve the cellular uptake of nucleic acids without suffering the drawbacks of viral delivery vectors. However, these delivery systems are faced with a major challenge for worldwide deployment, as their poor thermal stability elicits the need for cold chain transportation. Here, we demonstrate a biomaterial strategy to drastically improve the thermal stability of DNA polyplexes. Importantly, we demonstrate long-term room temperature storage with a transfection efficiency maintained for at least 9 months. Additionally, extreme heat shock studies show retained luciferase expression after heat treatment at 70 °C. We therefore provide a proof of concept for a platform biotechnology that could provide long-term room temperature storage for temperature-sensitive nucleic acid therapeutics, eliminating the need for the cold chain, which in turn would reduce the cost of distributing life-saving therapeutics worldwide.


Asunto(s)
ADN , Humanos , ADN/química , Transfección/métodos , Polímeros/química , Respuesta al Choque Térmico/efectos de los fármacos , Temperatura , Calor
2.
J Environ Manage ; 304: 114322, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35021594

RESUMEN

Textile dyeing processes are known for their negative environmental impacts due to the production of aqueous effluents containing toxic dyes. Therefore, new wastewater treatment processes need to be developed to treat such effluents, including Liquid-Liquid Extraction (LLE) process using Ionic Liquids (IL). This work aimed to evaluate the application of the hydrophobic IL trihexyltetradecylphosphonium decanoate to extract black, navy, and royal reactive dyes from water and evaluate the toxicological aspects of the resulting water stream. We investigated the effect of selected parameters, such as pH (2-12), temperature (20-50 °C), salt effects, dye concentration (0.5-50 mg/L), and phase volume ratio (900-9000) on the dye extraction. The results showed extraction yields as high as 97% for the three dyes and an extraction capacity of approximately 300 mg/g for black and navy dyes and 400 mg/g for royal. The toxicity tests involved Lactuca sativa, Triticum aestivium L, and Daphnia magna as bioindicators. The difference between the toxicity of the dye solutions before and after extraction was not statistically significant when L. sativa and Triticum aestivum L were used as bioindicators. However, the extracted solution showed increased toxicity towards D. magna due to traces of IL. Overall, the IL has a high extraction capacity for the black, navy, and royal dyes. Nevertheless, further studies on LLE associated with other processes must be carried out to reduce the risk linked to the toxicity of IL transferred to the water.


Asunto(s)
Líquidos Iónicos , Contaminantes Químicos del Agua , Animales , Colorantes/toxicidad , Daphnia , Industria Textil , Textiles , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
3.
Biotechnol Bioeng ; 118(2): 592-600, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33090452

RESUMEN

The temperature sensitivity of vaccines and therapeutic proteins forces the distribution of life-saving treatments to rely heavily on the temperature-controlled (usually 2-8°C) supply and distribution network known as the cold chain. Here, using avidin as a model, we demonstrate how surface engineering could significantly increase the thermal stability of therapeutic proteins. A combination of spectroscopic (Fourier transform infrared, circular dichroism, and ultraviolet-visible) and scattering techniques (dynamic light scattering, small-angle, and wide-angle X-ray scattering) were deployed to probe the activity, structure, and stability of the model protein. Temperature-dependent synchrotron radiation circular dichroism spectroscopy was used to demonstrate a significant increase in thermal stability, with a half denaturation temperature of 139.0°C and reversible unfolding with modified avidin returning to a 90% folded state when heated to temperatures below 100°C. Accelerated aging studies revealed that modified avidin retained its secondary structure after storage at 40°C for 56 days, equivalent to 160 days at 25°C. Furthermore, binding studies with multiple ligands revealed that the binding site remained functional after modification. As a result, this approach has potential as a storage technology for therapeutic proteins and the elimination of the cold chain, enabling the dissemination of life-saving vaccines worldwide.


Asunto(s)
Avidina/química , Modelos Moleculares , Pliegue de Proteína , Dicroismo Circular , Solventes , Temperatura , Termodinámica
4.
Chem Rev ; 124(12): 7533-7535, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38919072
5.
Environ Sci Technol ; 55(8): 5291-5300, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33725441

RESUMEN

Sludge produced from wastewater treatment has little to no value and is typically treated through volume reduction techniques, such as dewatering, thickening, or digestion. However, these methods inherently increase heavy metal concentrations, which makes the sludge unsuitable for land spreading and difficult to dispose of, owing to strict legal requirements/regulations concerning these metals. We addressed this problem, for the first time, by using recyclable low-cost protic ionic liquids to complex these toxic metals through a chemical fractionation process. Sewage sludge samples collected from wastewater plants in the UK were heated with methylimidazolium chloride ([Hmim]Cl, triethylammonium hydrogen sulfate ([TEA][HSO4]) and dimethylbutylammonium hydrogen sulfate ([DMBA][HSO4]) under various operating temperatures, times and solids loadings to separate the sludge from its metal contaminants. Analysis of the residual solid product and metal-rich ionic liquid liquor using inductively coupled plasma-emission spectrometry showed that [Hmim]Cl extracted >90% of CdII, NiII, ZnII, and PbII without altering the phosphorus content, while other toxic metals such as CrIII, CrVI and AsIII were more readily removed (>80%) with [TEA][HSO4]. We test the recyclability of [Hmim]Cl, showing insignificant efficiency losses over 6 cycles and discuss the possibilities of using electrochemical deposition to prevent the buildup of metal in the IL. This approach opens up new avenues for sewage sludge valorization, including potential applications in emulsion fuels or fertilizer development, accessed by techno-economic analysis.


Asunto(s)
Líquidos Iónicos , Metales Pesados , Metales Pesados/análisis , Fósforo , Aguas del Alcantarillado , Aguas Residuales
6.
Chem Rev ; 118(2): 747-800, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29300087

RESUMEN

Sustainable solvents are a topic of growing interest in both the research community and the chemical industry due to a growing awareness of the impact of solvents on pollution, energy usage, and contributions to air quality and climate change. Solvent losses represent a major portion of organic pollution, and solvent removal represents a large proportion of process energy consumption. To counter these issues, a range of greener or more sustainable solvents have been proposed and developed over the past three decades. Much of the focus has been on the environmental credentials of the solvent itself, although how a substance is deployed is as important to sustainability as what it is made from. In this Review, we consider several aspects of the most prominent sustainable organic solvents in use today, ionic liquids, deep eutectic solvents, supercritical fluids, switchable solvents, liquid polymers, and renewable solvents. We examine not only the performance of each class of solvent within the context of the reactions or extractions for which it is employed, but also give consideration to the wider context of the process and system within which the solvent is deployed. A wide range of technical, economic, and environmental factors are considered, giving a more complete picture of the current status of sustainable solvent research and development.

7.
Molecules ; 25(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429136

RESUMEN

We report on the pretreatment of poplar wood with three different 1-ethyl-3-methylimidazolium ionic liquids, [EMim][OAc], [EMim][MeSO3], and [EMim][HSO4], at varying water contents from 0-40 wt% at 100 °C. The performance was evaluated by observing the lignin and hemicellulose removal, as well as enzymatic saccharification and lignin yield. The mechanism of pretreatment varied between the ionic liquids studied, with the hydrogen sulfate ionic liquid performing delignification and hemicellulose hydrolysis more effectively than the other solvents across the investigated water content range. The acetate ionic liquid produced superior glucose yield at low water contents, while the hydrogen sulfate ionic liquid performed better at higher water contents and produced a recoverable lignin. The methanesulfonate ionic liquid did not introduce significant fractionation or enhancement of saccharification yield under the conditions used. These findings help distinguish the roles of anion hydrogen bonding, solvent acidity, and water content on ionic liquid pretreatment and can aid with anion and water content selections for different applications.


Asunto(s)
Imidazoles/química , Líquidos Iónicos/química , Lignina/química , Polisacáridos/química , Populus/química , Agua/química , Biomasa , Glucosa/química , Calor , Humanos , Hidrólisis , Madera/química
8.
Angew Chem Int Ed Engl ; 59(37): 15798-15802, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32893978

RESUMEN

Differential scanning calorimetry (DSC) is increasingly used as evidence to support a favourable safety profile of novel chemistry, or to highlight the need for caution. DSC enables preliminary assessment of the thermal hazards of a potentially energetic compound. However, unlike other standard characterisation methods, which have well defined formats for reporting data, the current reporting of DSC results for thermal hazard assessment has shown concerning trends. Around half of all results in 2019 did not include experimental details required to replicate the procedure. Furthermore, analysis for thermal hazard assessment is often only conducted in unsealed crucibles, which could lead to misleading results and dangerously incorrect conclusions. We highlight the specific issues with DSC analysis of hazardous compounds currently in the organic chemistry literature and provide simple "best practice" guidelines which will give chemists confidence in reported DSC results and the conclusions drawn from them.

9.
J Org Chem ; 84(9): 5893-5898, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-30951630

RESUMEN

2-Azido-4,6-dimethoxy-1,3,5-triazine (ADT) was reported recently as a new "intrinsically safe" diazo-transfer reagent. This assessment was based on differential scanning calorimetry data indicating that ADT exhibits endothermic decomposition. We present DSC data on ADT that show exothermic decomposition with an initiation temperature ( Tinit) of 159 °C and an enthalpy of decomposition (Δ HD) of -1135 J g-1 (-207 kJ mol-1). We conclude that ADT is potentially explosive and must be treated with caution, being of comparable exothermic magnitude to tosyl azide (TsN3). A maximum recommended process temperature for ADT is 55 °C.

10.
J Phys Chem A ; 123(44): 9552-9559, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31609617

RESUMEN

The Zn 1s valence-to-core (VtC) X-ray emission spectra of seven ionic liquids have been measured experimentally and simulated on the basis of time-dependent density-functional theory (TDDFT) calculations. Six of the ionic liquids were made by mixing [C8C1Im]X and Zn(II)X2 at three different ZnX2 mole fractions (0.33, 0.50, or 0.67) for X = Cl or Br, and a further ionic liquid was made by mixing [P6,6,6,14]Cl and a mole fraction of ZnCl2 of 0.33. Calculations were performed for the [ZnX4]2-, [Zn2X6]2-, and [Zn4X10]2- ions to capture the expected metal complex speciation. The VtC emission spectra showed three bands arising from single-electron processes that can be assigned to emission from ligand p-type orbitals, zinc d-orbitals, and ligand s-type orbitals. For all seven ionic liquids, the highest occupied molecular orbital arises from the ligand p orbitals, and the spectra for the different size metal complexes for the same X were found to be very similar, in terms of both relative peak intensities and peak energies. For both experiments and TDDFT calculations, there was an energy difference of 0.5 eV between the Cl-based and Br-based metal complexes for the ligand s and p orbitals, while the Zn 3d orbital energies were relatively unaffected by the identity of the ligand. The TDDFT calculations find that for the ions with symmetrically equivalent zinc atoms ([Zn2X6]2- and [Zn4X10]2-), the most appropriate core-ionized reference state has a core-hole that is localized on a single zinc atom. In this framework, the spectra for the larger ions can be viewed as a sum of spectra for the tetrahedral complex with a single zinc atom with small variations in the structure of the coordinating ligands. Because the spectra are relatively insensitive to small changes in the geometry of the ligands, this is consistent with the small variation in the spectra measured in the experiment.

11.
Faraday Discuss ; 202: 331-349, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28718847

RESUMEN

The ionoSolv pretreatment is a new technique employing protic low-cost ionic liquids and has previously been applied to successfully fractionate switchgrass and the grass Miscanthus giganteus. This study investigates the effect of using the protic ionic liquid solution [N2220][HSO4]80% with two different acid/base ratios (1.02 and 0.98) at 120, 150 and 170 °C on the pretreatment outcome of the hardwood willow. The ionic liquid solution was able to fractionate willow, and a pulp and lignin fraction were recovered after treatment. The pretreatment success was determined via enzymatic hydrolysis of the pulp, which showed that the ionoSolv pretreatment was able to increase enzymatic glucose yields compared to untreated willow biomass. The pretreatment produced a cellulose-rich pulp with high hemicellulose and lignin removal. The pulp composition and glucose yield after saccharification were greatly influenced by the acidity of the ionic liquid solution, temperature and pretreatment time. The extracted lignin was analysed via 2-D HSQC NMR spectroscopy and GPC to investigate the changes in the lignin structure induced by the pretreatment severity. The lignin structure (in terms of inter-unit linkages and S/G ratio) and molecular weight varied significantly depending on the pretreatment conditions used.


Asunto(s)
Celulosa/aislamiento & purificación , Líquidos Iónicos/química , Lignina/aislamiento & purificación , Salix/química , Biomasa , Celulosa/química , Celulosa/metabolismo , Hidrólisis , Líquidos Iónicos/metabolismo , Lignina/química , Lignina/metabolismo , Soluciones , Temperatura
12.
J Am Chem Soc ; 138(13): 4494-501, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26976718

RESUMEN

Nonaqueous biocatalysis is rapidly becoming a desirable tool for chemical and fuel synthesis in both the laboratory and industry. Similarly, ionic liquids are increasingly popular anhydrous reaction media for a number of industrial processes. Consequently, the use of enzymes in ionic liquids as efficient, environment-friendly, commercial biocatalysts is highly attractive. However, issues surrounding the poor solubility and low stability of enzymes in truly anhydrous media remain a significant challenge. Here, we demonstrate for the first time that engineering the surface of a protein to yield protein-polymer surfactant nanoconstructs allows for dissolution of dry protein into dry ionic liquids. Using myoglobin as a model protein, we show that this method can deliver protein molecules with near native structure into both hydrophilic and hydrophobic anhydrous ionic liquids. Remarkably, using temperature-dependent synchrotron radiation circular dichroism spectroscopy to measure half-denaturation temperatures, our results show that protein stability increases by 55 °C in the ionic liquid as compared to aqueous solution, pushing the solution thermal denaturation beyond the boiling point of water. Therefore, the work presented herein could provide a platform for the realization of biocatalysis at high temperatures or in anhydrous solvent systems.


Asunto(s)
Líquidos Iónicos/química , Mioglobina/química , Polímeros/química , Proteínas/química , Tensoactivos/química , Biocatálisis , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Soluciones , Solventes/química , Temperatura , Agua/química
13.
Phys Chem Chem Phys ; 18(12): 8608-24, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-26947103

RESUMEN

The structures of mixtures of ionic liquids (ILs) featuring a common 1-butyl-3-methylimidazolium ([C4C1im](+)) cation but different anions have been investigated both experimentally and computationally. (1)H and (13)C NMR of the ILs and their mixtures has been performed both on the undiluted liquids and those diluted by CD2Cl2. These experiments have been complemented by quantum chemical density functional theory calculations and molecular dynamics simulations. These techniques have identified the formation of preferential interactions between H(2) of the imidazolium cation and the most strongly hydrogen bond (H-bond) accepting anion. In addition, a preference for the more weakly H-bond accepting anion to interact above the imidazolium ring through anion-π(+) interactions has been identified. The modelling of these data has identified that the magnitude of these preferences are small, of the order of only a few kJ mol(-1), for all IL mixtures. No clustering of the anions around a specific cation could be observed, indicating that these interactions arise from the reorientation of the cation within a randomly assigned network of anions. π(+)-π(+) stacking of the imidazolium cations was also studied and found to be promoted by ILs with a strong H-bond accepting anion. Stacking interactions are easily disrupted by the introduction of small proportions (<50 mol%) of a weakly coordinating anion due to their propensity to form anion-π(+) interactions. These results suggest that the formation of IL mixtures with different anions leads to subtle structural changes of much lower energy than the Coulombic ordering of ions, accounting for why most IL mixtures exhibit ideal, or nearly ideal, behaviour.

14.
Phys Chem Chem Phys ; 16(14): 6593-601, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24569531

RESUMEN

In the past decade, ionic liquids (ILs) have been the focus of intensive research regarding their use as potential and alternative solvents in many chemical applications. Targeting their effectiveness, recent investigations have attempted to establish polarity scales capable of ranking ILs according to their chemical behaviours. However, some major drawbacks have been found since polarity scales only report relative ranks because they depend on the set of probe dyes used, and they are sensitive to measurement conditions, such as purity levels of the ILs and procedures employed. Due to all these difficulties it is of crucial importance to find alternative and/or predictive methods and to evaluate them as a priori approaches capable of providing the chemical properties of ILs. Furthermore, the large number of ILs available makes their experimental characterization, usually achieved by a trial and error methodology, burdensome. In this context, we firstly evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond basicity of ILs. After demonstrating a straight-line correlation between the experimental hydrogen-bond basicity values and the COSMO-RS hydrogen-bonding energies in equimolar cation-anion pairs, an extended scale for the hydrogen-bond accepting ability of IL anions is proposed here. This new ranking of the ILs' chemical properties opens the possibility to pre-screen appropriate ILs (even those not yet synthesized) for a given task or application.

15.
J Phys Chem Lett ; 15(9): 2311-2318, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38386631

RESUMEN

In this paper, we investigated the effect of cation structure and water content on proton dissociation in alkylammonium [HSO4]- protic ionic liquids (ILs) doped with 20 wt % water and correlated this with experimental Hammett acidities. For pure systems, increased cation substitution resulted in a reduction in the number of direct anion-anion neighbors leading to larger numbers of small aggregates, which is further enhanced with addition of water. We also observed spontaneous proton dissociation from [HSO4]- to water only for primary amine-based protic ILs, preceded by the formation of an anion trimer motif. Investigation using DFT calculations revealed spontaneous proton dissociation from [HSO4]- to water can occur for each of the protic ILs investigated; however, this is dependent on the size of the anion aggregates. These findings are important in the fields of catalysis and lignocellulosic biomass, where solvent acidity is a crucial parameter in biomass fractionation and lignin chemistry.

16.
ACS Sustain Resour Manag ; 1(5): 842-856, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38807756

RESUMEN

This study establishes a foundation for the ionic liquid (IL) pretreatment of duckweed biomass. An optimized IL-based process was designed to exploit the unique properties of duckweed including efficient metal removal, potential starch accumulation, and protein accumulation. Two ILs, namely, dimethylethanolammonium formate ([DMEtA][HCOO]) and N,N-dimethylbutylammonium hydrogen sulfate ([DMBA][HSO4]), were investigated for the pretreatment of two duckweed species (Spirodela polyrhiza and Lemna minor). The evaluation focused on starch recovery, sugar release, protein recovery, and metal extraction capabilities. [DMEtA][HCOO] demonstrated near-quantitative starch recoveries at 120 °C, while [DMBA][HSO4] showed similar performance at 90 °C within a reaction time of 2 h. Saccharification yields for most pulps exceeded 90% after 8 h of hydrolysis, outperforming "traditional" lignocellulosic biomasses such as miscanthus or sugarcane bagasse. Approximately 50 and 80 wt % of the protein were solubilized in [DMEtA][HCOO] and [DMBA][HSO4], respectively, while the remaining protein distributed between the pulp and lignin. However, the solubilized protein in the IL could not be recovered due to its low molecular weight. Regarding metal extraction, [DMEtA][HCOO] demonstrated higher efficiency, achieving 81% removal of Ni from Lemna minor's pulps, whereas [DMBA][HSO4] extracted only 28% of Ni with slightly higher pulp concentrations. These findings indicate the need for further optimization in concurrent metal extraction using ILs.

17.
Chem Soc Rev ; 41(23): 7780-802, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22890419

RESUMEN

Simple ionic liquids have long been held to be designer solvents, based upon the ability to independently vary their cations and anions. The formation of mixtures of ionic liquids increases this synthetic flexibility. We review the available literature of these ionic liquid mixtures to identify how their properties change and the possibility for their application.

18.
ACS Sustain Chem Eng ; 11(6): 2404-2415, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36817410

RESUMEN

The impact of pretreatment severity in the acidic protic ionic liquid (IL) N,N-dimethylbutylammonium hydrogen sulfate, [DMBA][HSO4] using pine softwood was investigated using a modified severity factor that considers the IL solution acidity based on Hammett acidity. A Box-Behnken experimental design was employed to evaluate pretreatment severity with temperature, pretreatment time, and IL concentration as factors and degree of delignification as the response variable. The optimal pretreatment conditions were found to be at 170 °C, 30 min, and 80 wt % IL, which yielded nearly 90% of delignification and 95% of glucose yield in enzymatic saccharification. The modified severity factor showed an improved correlation with the fractionation indicators relative to the classical pretreatment severity factor, indicating that it can better predict the pretreatment outcomes, particularly for delignification and hemicellulose removal. The fate of hemicellulose, its conversion to humins, and its impact on the precipitated lignin properties were also investigated and correlated to the modified pretreatment severity factor. It was found that such parameters alone cannot be used to predict the fate of dissolved hemicellulose sugars in the IL medium. Furthermore, IL acidity greatly impacts the degradation of the dissolved hemicellulose sugars and the formation of humins.

19.
ACS Sustain Chem Eng ; 11(42): 15228-15241, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37886039

RESUMEN

Converting lignin into advanced porous carbon materials, with desirable surface functionalities, can be challenging. While lignin-derived carbons produced by pyrolysis at >600 °C develop porosity, they also simultaneously lose nearly all their surface functional groups. By contrast, pyrolysis of lignin at lower temperatures (e.g., <400 °C) results in the formation of nonporous char that retains some surface functionalities. However, copyrolysis of lignin with some ionic liquids (ILs) at lower temperatures offers an opportunity to produce porous carbon materials with both large surface areas and an abundance of surface functional groups. This study investigates the effects of IL properties (solubility, thermal, and ionic size) on the specific surface areas of lignin-derived carbons produced by copyrolysis of lignin and ILs at 350-400 °C for 20 min. It was found that ILs that have bulky anions and small cation sizes can induce porosity in lignin-derived carbons with large surface areas. Among 16 ILs that were tested, [C2MIm][NTF2] demonstrated the best performance; the inclusion of it in the copyrolysis process resulted in lignin-derived carbons with ∼528 m2 g-1 and 0.48 cm3 g-1. Lignin-derived carbons produced using no IL, [C2MIm][NTF2], and [C4MIm][OTF] were further characterized for morphology, interfacial chemical, and elemental properties. The copyrolysis of lignin and [C2MIm][NTF2], and [C4MIm][OTF] resulted in doping of heteroatoms (N and S) on the porous carbon materials during pyrolysis reaction. The present findings contribute to a better understanding of the main property of ILs responsible for creating porosity in lignin carbon during pyrolysis.

20.
Nanoscale Adv ; 5(9): 2437-2452, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37143811

RESUMEN

Zinc oxide nanoparticles, with a hexagonal flake structure, are of significant interest across a range of applications including photocatalysis and biomedicine. Simonkolleite (Zn5(OH)8Cl2·H2O), a layered double hydroxide, is a precursor for ZnO. Most simonkolleite synthesis routes require precise pH adjustment of Zn-containing salts in alkaline solution, and still produce some undesired morphologies along with the hexagonal one. Additionally, liquid-phase synthesis routes, based on conventional solvents, are environmentally burdensome. Herein aqueous ionic liquid, betaine hydrochloride (betaine·HCl), solutions are used to directly oxidise metallic Zn, producing pure simonkolleite nano/microcrystals (X-ray diffraction analysis, thermogravimetric analysis). Imaging (scanning electron microscopy) showed regular and uniform hexagonal simonkolleite flakes. Morphological control, as a function of reaction conditions (betaine·HCl concentration, reaction time, and reaction temperature), was achieved. Different growth mechanisms were observed as a function of the concentration of betaine·HCl solution, both traditional classical growth of individual crystals and non-traditional growth patterns; the latter included examples of Ostwald ripening and oriented attachment. After calcination, simonkolleite's transformation into ZnO retains its hexagonal skeleton; this produces a nano/micro-ZnO with a relatively uniform shape and size through a convenient reaction route.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA