Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 32(8): 1925-1942, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36680370

RESUMEN

Divergence in the face of high dispersal capabilities is a documented but poorly understood phenomenon. The white-tailed eagle (Haliaeetus albicilla) has a large geographic dispersal capability and should theoretically be able to maintain genetic homogeneity across its dispersal range. However, following analysis of the genomic variation of white-tailed eagles, from both historical and contemporary samples, clear signatures of ancient biogeographic substructure across Europe and the North-East Atlantic is observed. The greatest genomic differentiation was observed between island (Greenland and Iceland) and mainland (Denmark, Norway and Estonia) populations. The two island populations share a common ancestry from a single mainland population, distinct from the other sampled mainland populations, and despite the potential for high connectivity between Iceland and Greenland they are well separated from each other and are characterized by inbreeding and little variation. Temporal differences also highlight a pattern of regional populations persisting despite the potential for admixture. All sampled populations generally showed a decline in effective population size over time, which may have been shaped by four historical events: (1) Isolation of refugia during the last glacial period 110-115,000 years ago, (2) population divergence following the colonization of the deglaciated areas ~10,000 years ago, (3) human population expansion, which led to the settlement in Iceland ~1100 years ago, and (4) human persecution and exposure to toxic pollutants during the last two centuries.


Asunto(s)
Águilas , Contaminantes Ambientales , Animales , Humanos , Águilas/genética , Europa (Continente) , Noruega , Genómica , Variación Genética/genética
2.
J Virol ; 93(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30996092

RESUMEN

Subtype H10 influenza A viruses (IAVs) have been recovered from domestic poultry and various aquatic bird species, and sporadic transmission of these IAVs from avian species to mammals (i.e., human, seal, and mink) are well documented. In 2015, we isolated four H10N7 viruses from gulls in Iceland. Genomic analyses showed four gene segments in the viruses were genetically associated with H10 IAVs that caused influenza outbreaks and deaths among European seals in 2014. Antigenic characterization suggested minimal antigenic variation among these H10N7 isolates and other archived H10 viruses recovered from human, seal, mink, and various avian species in Asia, Europe, and North America. Glycan binding preference analyses suggested that, similar to other avian-origin H10 IAVs, these gull-origin H10N7 IAVs bound to both avian-like alpha 2,3-linked sialic acids and human-like alpha 2,6-linked sialic acids. However, when the gull-origin viruses were compared with another Eurasian avian-origin H10N8 IAV, which caused human infections, the gull-origin virus showed significantly higher binding affinity to human-like glycan receptors. Results from a ferret experiment demonstrated that a gull-origin H10N7 IAV replicated well in turbinate, trachea, and lung, but replication was most efficient in turbinate and trachea. This gull-origin H10N7 virus can be transmitted between ferrets through the direct contact and aerosol routes, without prior adaptation. Gulls share their habitat with other birds and mammals and have frequent contact with humans; therefore, gull-origin H10N7 IAVs could pose a risk to public health. Surveillance and monitoring of these IAVs at the wild bird-human interface should be continued.IMPORTANCE Subtype H10 avian influenza A viruses (IAVs) have caused sporadic human infections and enzootic outbreaks among seals. In the fall of 2015, H10N7 viruses were recovered from gulls in Iceland, and genomic analyses showed that the viruses were genetically related with IAVs that caused outbreaks among seals in Europe a year earlier. These gull-origin viruses showed high binding affinity to human-like glycan receptors. Transmission studies in ferrets demonstrated that the gull-origin IAV could infect ferrets, and that the virus could be transmitted between ferrets through direct contact and aerosol droplets. This study demonstrated that avian H10 IAV can infect mammals and be transmitted among them without adaptation. Thus, avian H10 IAV is a candidate for influenza pandemic preparedness and should be monitored in wildlife and at the animal-human interface.


Asunto(s)
Hurones/virología , Subtipo H10N7 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Aerosoles , Animales , Animales Salvajes/virología , Aves/virología , Línea Celular , Charadriiformes/virología , Genoma Viral , Humanos , Islandia , Subtipo H10N7 del Virus de la Influenza A/clasificación , Subtipo H10N7 del Virus de la Influenza A/genética , Subtipo H10N7 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/patología , Pandemias , Filogenia , Polisacáridos , Sistema Respiratorio/patología , Sistema Respiratorio/virología , Alineación de Secuencia
3.
Sci Total Environ ; 844: 156944, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35752241

RESUMEN

Since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of mercury (Hg) on Arctic biota in 2011 and 2018, there has been a considerable number of new Arctic bird studies. This review article provides contemporary Hg exposure and potential health risk for 36 Arctic seabird and shorebird species, representing a larger portion of the Arctic than during previous AMAP assessments now also including parts of the Russian Arctic. To assess risk to birds, we used Hg toxicity benchmarks established for blood and converted to egg, liver, and feather tissues. Several Arctic seabird populations showed Hg concentrations that exceeded toxicity benchmarks, with 50 % of individual birds exceeding the "no adverse health effect" level. In particular, 5 % of all studied birds were considered to be at moderate or higher risk to Hg toxicity. However, most seabirds (95 %) were generally at lower risk to Hg toxicity. The highest Hg contamination was observed in seabirds breeding in the western Atlantic and Pacific Oceans. Most Arctic shorebirds exhibited low Hg concentrations, with approximately 45 % of individuals categorized at no risk, 2.5 % at high risk category, and no individual at severe risk. Although the majority Arctic-breeding seabirds and shorebirds appeared at lower risk to Hg toxicity, recent studies have reported deleterious effects of Hg on some pituitary hormones, genotoxicity, and reproductive performance. Adult survival appeared unaffected by Hg exposure, although long-term banding studies incorporating Hg are still limited. Although Hg contamination across the Arctic is considered low for most bird species, Hg in combination with other stressors, including other contaminants, diseases, parasites, and climate change, may still cause adverse effects. Future investigations on the global impact of Hg on Arctic birds should be conducted within a multi-stressor framework. This information helps to address Article 22 (Effectiveness Evaluation) of the Minamata Convention on Mercury as a global pollutant.


Asunto(s)
Mercurio , Animales , Regiones Árticas , Aves , Monitoreo del Ambiente , Plumas/química , Humanos , Mercurio/análisis
4.
Sci Total Environ ; 793: 148599, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34328978

RESUMEN

The COST Action 'European Raptor Biomonitoring Facility' (ERBFacility) aims to develop pan-European raptor biomonitoring in support of better chemicals management in Europe, using raptors as sentinel species. This presents a significant challenge involving a range of constraints that must be identified and addressed. The aims of this study were to: (1) carry out a comprehensive review of the constraints that may limit the gathering in the field of raptor samples and contextual data, and assess their relative importance across Europe; and (2) identify and discuss possible solutions to the key constraints that were identified. We applied a participatory approach to identify constraints and to discuss feasible solutions. Thirty-one constraints were identified, which were divided into four categories: legal, methodological, spatial coverage, and skills constraints. To assess the importance of the constraints and their possible solutions, we collected information through scientific workshops and by distributing a questionnaire to stakeholders in all the countries involved in ERBFacility. We obtained 74 answers to the questionnaire, from 24 of the 39 COST participating countries. The most important constraints identified were related to the collection of complex contextual data about sources of contamination, and the low number of existing raptor population national/regional monitoring schemes and ecological studies that could provide raptor samples. Legal constraints, such as permits to allow the collection of invasive samples, and skills constraints, such as the lack of expertise to practice necropsies, were also highlighted. Here, we present solutions for all the constraints identified, thus suggesting the feasibility of establishing a long-term European Raptor Sampling Programme as a key element of the planned European Raptor Biomonitoring Facility.


Asunto(s)
Rapaces , Animales , Monitoreo Biológico , Monitoreo del Ambiente , Europa (Continente)
5.
PLoS One ; 9(3): e92075, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24647410

RESUMEN

Avian influenza virus (AIV) in wild birds has been of increasing interest over the last decade due to the emergence of AIVs that cause significant disease and mortality in both poultry and humans. While research clearly demonstrates that AIVs can move across the Pacific or Atlantic Ocean, there has been no data to support the mechanism of how this occurs. In spring and autumn of 2010 and autumn of 2011 we obtained cloacal swab samples from 1078 waterfowl, gulls, and shorebirds of various species in southwest and west Iceland and tested them for AIV. From these, we isolated and fully sequenced the genomes of 29 AIVs from wild caught gulls (Charadriiformes) and waterfowl (Anseriformes) in Iceland. We detected viruses that were entirely (8 of 8 genomic segments) of American lineage, viruses that were entirely of Eurasian lineage, and viruses with mixed American-Eurasian lineage. Prior to this work only 2 AIVs had been reported from wild birds in Iceland and only the sequence from one segment was available in GenBank. This is the first report of finding AIVs of entirely American lineage and Eurasian lineage, as well as reassortant viruses, together in the same geographic location. Our study demonstrates the importance of the North Atlantic as a corridor for the movement of AIVs between Europe and North America.


Asunto(s)
Migración Animal , Aves/virología , Virus de la Influenza A/fisiología , Gripe Aviar/virología , Alelos , Animales , Océano Atlántico , Variación Genética , Islandia , Virus de la Influenza A/genética , Filogenia , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA