Asunto(s)
Músculo Liso , Historia del Siglo XX , Músculo Liso/fisiología , Humanos , Fisiología/historia , Historia del Siglo XXI , AnimalesRESUMEN
1H spin-spin relaxation times of water were measured with the CPMG sequence in dilute aqueous solutions of glucitol, mannitol, glycerol, glycol, the methyl D-pyranosides of alpha-glucose, beta-glucose, alpha-galactose, beta-galactose, alpha-xylose, beta-xylose, beta-arabinose and sucrose, alpha,alpha-trehalose, beta-maltose, maltotriose and maltoheptaose. The relaxation-time dispersion was measured by varying the CPMG pulse spacing, tau. These data were interpreted by means of the Carver-Richards model in which exchange between water protons and labile solute hydroxyl protons provides a significant contribution to the relaxation. From the dependences on temperature and tau, parameters characteristic of the pool of hydroxyls belonging to a given solute were extracted by nonlinear regression, including: the fraction of exchangeable protons, P, the chemical-shift difference between water protons and hydroxyl protons, deltaomega, the intrinsic spin-spin relaxation time, T2, and the chemical exchange rate, k. These solute-specific parameters are related, respectively, to the concentration, identity, mobility and exchange life-time of the hydroxyl site. At 298 K, values of deltaomega, T2 and k were found to be of the order of 1 ppm, 100 ms and 1000 s(-1), respectively. Effects of molecular size, conformation and solute concentration were investigated. The exchange mechanism was characterised by Eyring activation enthalpies and entropies with values in the ranges 50-70 kJ mol(-1) and -10 to 60 J K(-1)mol(-1), respectively.