Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 606(7916): 984-991, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35705804

RESUMEN

Gains and losses of DNA are prevalent in cancer and emerge as a consequence of inter-related processes of replication stress, mitotic errors, spindle multipolarity and breakage-fusion-bridge cycles, among others, which may lead to chromosomal instability and aneuploidy1,2. These copy number alterations contribute to cancer initiation, progression and therapeutic resistance3-5. Here we present a conceptual framework to examine the patterns of copy number alterations in human cancer that is widely applicable to diverse data types, including whole-genome sequencing, whole-exome sequencing, reduced representation bisulfite sequencing, single-cell DNA sequencing and SNP6 microarray data. Deploying this framework to 9,873 cancers representing 33 human cancer types from The Cancer Genome Atlas6 revealed a set of 21 copy number signatures that explain the copy number patterns of 97% of samples. Seventeen copy number signatures were attributed to biological phenomena of whole-genome doubling, aneuploidy, loss of heterozygosity, homologous recombination deficiency, chromothripsis and haploidization. The aetiologies of four copy number signatures remain unexplained. Some cancer types harbour amplicon signatures associated with extrachromosomal DNA, disease-specific survival and proto-oncogene gains such as MDM2. In contrast to base-scale mutational signatures, no copy number signature was associated with many known exogenous cancer risk factors. Our results synthesize the global landscape of copy number alterations in human cancer by revealing a diversity of mutational processes that give rise to these alterations.


Asunto(s)
Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Neoplasias , Aneuploidia , Cromotripsis , Variaciones en el Número de Copia de ADN/genética , Haploidia , Recombinación Homóloga/genética , Humanos , Pérdida de Heterocigocidad/genética , Mutación , Neoplasias/genética , Neoplasias/patología , Secuenciación del Exoma
2.
Histopathology ; 80(1): 109-121, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34958500

RESUMEN

Undifferentiated pleomorphic sarcoma now falls under the broader rubric of undifferentiated soft tissue sarcoma (USTS) in the 2020 World Health Organization classification of bone and soft tissue tumours. These rare cancers remain a diagnosis of exclusion, and show genomic complexity manifesting as extreme forms of aneuploidy and genetic rearrangement. This review covers some of the recent advances in the diagnosis and treatment of USTS based on genomic sequencing, cancer evolution and heterogeneity studies, and immunotherapy. We highlight the critical role that pathologists have to play in the diagnosis and treatment of patients with USTS, viewed through the lens of the hallmarks of cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Genómica , Sarcoma/patología , Neoplasias de los Tejidos Blandos/patología , Humanos , Sarcoma/genética , Neoplasias de los Tejidos Blandos/genética
3.
Genome Med ; 14(1): 99, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042521

RESUMEN

BACKGROUND: Central conventional chondrosarcoma (CS) is the most common subtype of primary malignant bone tumour in adults. Treatment options are usually limited to surgery, and prognosis is challenging. These tumours are characterised by the presence and absence of IDH1 and IDH2 mutations, and recently, TERT promoter alterations have been reported in around 20% of cases. The effect of these mutations on clinical outcome remains unclear. The purpose of this study was to determine if prognostic accuracy can be improved by the addition of genomic data, and specifically by examination of IDH1, IDH2, and TERT mutations. METHODS: In this study, we combined both archival samples and data sourced from the Genomics England 100,000 Genomes Project (n = 356). Mutations in IDH1, IDH2, and TERT were profiled using digital droplet PCR (n = 346), whole genome sequencing (n=68), or both (n = 64). Complex events and other genetic features were also examined, along with methylation array data (n = 84). We correlated clinical features and patient outcomes with our genetic findings. RESULTS: IDH2-mutant tumours occur in older patients and commonly present with high-grade or dedifferentiated disease. Notably, TERT mutations occur most frequently in IDH2-mutant tumours, although have no effect on survival in this group. In contrast, TERT mutations are rarer in IDH1-mutant tumours, yet they are associated with a less favourable outcome in this group. We also found that methylation profiles distinguish IDH1- from IDH2-mutant tumours. IDH wild-type tumours rarely exhibit TERT mutations and tend to be diagnosed in a younger population than those with tumours harbouring IDH1 and IDH2 mutations. A major genetic feature of this group is haploidisation and subsequent genome doubling. These tumours evolve less frequently to dedifferentiated disease and therefore constitute a lower risk group. CONCLUSIONS: Tumours with IDH1 or IDH2 mutations or those that are IDHwt have significantly different genetic pathways and outcomes in relation to TERT mutation. Diagnostic testing for IDH1, IDH2, and TERT mutations could therefore help to guide clinical monitoring and prognostication.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , Adulto , Anciano , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Condrosarcoma/genética , Condrosarcoma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Modelos Genéticos , Mutación , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA