Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale Res Lett ; 12(1): 353, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28511534

RESUMEN

We investigate the ferroelectric state of a tetragonal BiFeO3 thin film grown on a LaAlO3 (001) substrate using an optical second harmonic generation (SHG) microscope. Whereas the ferroelectric state of this material hosts nanometer-sized domains which again form micrometer-sized domains of four different configurations, we could figure out the characteristic features of each domain from the SHG mapping with various sizes of the probe beam, i.e., from 0.7 to 3.9 µm in its diameter. In particular, we demonstrate that a single micrometer-sized domain contributes to the SHG as a coherent summation of the constituent nanometer-sized domains, and multi-micrometer-sized domains contribute to the SHG as an incoherent summation of each micro-domain.

2.
Sci Rep ; 6: 36343, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27805036

RESUMEN

We investigate an evolution of the surface electronic state of the Bi1.5Sb0.5Te1.7Se1.3 single crystal, which is one of the most bulk insulating topological insulators, by examining terahertz light emitted from the sample surface upon the illumination of the near-infrared femtosecond laser pulses. We find that the surface state with a flat band bending can appear in the course of the natural maturation process of the surface state in an ambient air. Furthermore, we demonstrate that the evolution of the surface electronic state can be accelerated, decelerated, or even stopped by controlling environmental conditions to contain different amount of H2O, in particular.

3.
Nanoscale Res Lett ; 10(1): 489, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26694079

RESUMEN

We investigate the surface states of topological insulator (TI) Bi2Se3 thin films grown on Si nanocrystals and Al2O3 substrates by using terahertz (THz) emission spectroscopy. Compared to bulk crystalline Bi2Te2Se, film TIs exhibit distinct behaviors in the phase and amplitude of emitted THz radiation. In particular, Bi2Se3 grown on Al2O3 shows an anisotropic response with a strong modulation of the THz signal in its phase. From x-ray diffraction, we find that the crystal plane of the Bi2Se3 films is inclined with respect to the plane of the Al2O3 substrate by about 0.27°. This structural anisotropy affects the dynamics of photocarriers and hence leads to the observed anisotropic response in the THz emission. Such relevance demonstrates that THz emission spectroscopy can be a sensitive tool to investigate the fine details of the surface crystallography and electrostatics of thin film TIs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA