Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Exp Cell Res ; 403(1): 112594, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33823179

RESUMEN

COVID-19 was declared an international public health emergency in January, and a pandemic in March of 2020. There are over 125 million confirmed COVID-19 cases that have caused over 2.7 million deaths worldwide as of March 2021. COVID-19 is caused by the SARS-CoV-2 virus. SARS-CoV-2 presents a surface "spike" protein that binds to the ACE2 receptor to infect host cells. In addition to the respiratory tract, SARS-Cov-2 can also infect cells of the oral mucosa, which also express the ACE2 receptor. The spike and ACE2 proteins are highly glycosylated with sialic acid modifications that direct viral-host interactions and infection. Maackia amurensis seed lectin (MASL) has a strong affinity for sialic acid modified proteins and can be used as an antiviral agent. Here, we report that MASL targets the ACE2 receptor, decreases ACE2 expression and glycosylation, suppresses binding of the SARS-CoV-2 spike protein, and decreases expression of inflammatory mediators by oral epithelial cells that cause ARDS in COVID-19 patients. In addition, we report that MASL also inhibits SARS-CoV-2 infection of kidney epithelial cells in culture. This work identifies MASL as an agent with potential to inhibit SARS-CoV-2 infection and COVID-19 related inflammatory syndromes.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Lectinas/farmacología , Boca/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Progresión de la Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Maackia/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
J Med Educ Curric Dev ; 10: 23821205231177862, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275656

RESUMEN

Problem-based learning (PBL) utilizes a self-directed strategy. This process relies on group participation to succeed. Students without a background in biology or medicine can feel overwhelmed by the complexity of the subject matter and unable to participate in the group learning process. We incorporated curated educational videos in the PBL curriculum to help address this situation. First year medical students participated in this study in the form of a typical PBL session. They were then assessed on basic and clinical science knowledge and their learning experience. Student basic science and clinical knowledge were similar between the student groups. However, the students given a list of suggested videos scored higher in their learning experience, perception of feeling prepared, and participating in the group PBL experience than students who were not given the video list. Results from this study indicate that videos can be utilized to enhance the PBL process.

3.
Biochem Biophys Rep ; 32: 101341, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36120492

RESUMEN

Up to 70 million people around the world suffer from rheumatoid arthritis. Current treatment options have varied efficacy and can cause unwanted side effects. New approaches are needed to treat this condition. Sialic acid modifications on chondrocyte receptors have been associated with arthritic inflammation and joint destruction. For example, the transmembrane mucin receptor protein podoplanin (PDPN) has been identified as a functionally relevant receptor that presents extracellular sialic acid motifs. PDPN signaling promotes inflammation and invasion associated with arthritis and, therefore, has emerged as a target that can be used to inhibit arthritic inflammation. Maackia amurensis seed lectin (MASL) can target PDPN on chondrocytes to decrease inflammatory signaling cascades and reduce cartilage destruction in a lipopolysaccharide induced osteoarthritis mouse model. Here, we investigated the effects of MASL on rheumatoid arthritis progression in a TNFα transgenic (TNF-Tg) mouse model. Results from this study indicate that MASL can be administered orally to ameliorate joint malformation and increase velocity of movement exhibited by these TNF-Tg mice. These data support the consideration of MASL as a potential treatment for rheumatoid arthritis.

4.
J Cancer Res Clin Oncol ; 147(2): 445-457, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33205348

RESUMEN

PURPOSE: Oral cancer causes over 120,000 deaths annually and affects the quality of life for survivors. Over 90% of oral cancers are derived from oral squamous cell carcinoma cells (OSCCs) which are generally resistant to standard cytotoxic chemotherapy agents. OSCC cells often exhibit increased TGFß and PDPN receptor activity compared to nontransformed oral epithelial cells. Maackia amurensis seed lectin (MASL) can target the PDPN receptor and has been identified as a novel agent that can be used to treat oral cancer. However, mechanisms by which MASL inhibits OSCC progression are not yet clearly defined. METHODS: Here, we performed cell migration and cytotoxicity assays to assess the effects of MASL on OSCC motility and viability at physiologically relevant concentrations. We then performed comprehensive transcriptome analysis combined with transcription factor reporter assays to investigate the how MASL affects OSCC gene expression at these concentration. Key data were then confirmed by western blotting to evaluate the effects of MASL on gene expression and kinase signaling activity at the protein level. RESULTS: MASL significantly affected the expression of about 27% of approximately 15,000 genes found to be expressed by HSC-2 cells used to model OSCC cells in this study. These genes affected by MASL include members of the TGFß-SMAD, JAK-STAT, and Wnt-ßCTN signaling pathways. In particular, MASL decreased expression of PDPN, SOX2, and SMAD5 at the RNA and protein levels. MASL also inhibited SMAD and MAPK activity, and exhibited potential for combination therapy with doxorubicin and 5-fluorouracil. CONCLUSIONS: Taken together, results from this study indicate that MASL decreases activity of JAK-STAT, TGFß-SMAD, and Wnt-ßCTN signaling pathways to inhibit OSCC growth and motility. These data suggest that further studies should be undertaken to determine how MASL may also be used alone and in combination with other agents to treat oral cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Maackia/química , Neoplasias de la Boca/tratamiento farmacológico , Lectinas de Plantas/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Humanos , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Lectinas de Plantas/uso terapéutico , Factores de Transcripción SOXB1/genética , Transducción de Señal/efectos de los fármacos , Proteínas Smad/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Transcripción Genética/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos
5.
Res Sq ; 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33106801

RESUMEN

COVID-19 was declared an international public health emergency in January, and a pandemic in March of 2020. There are over 23 million confirmed COVID-19 cases that have cause over 800 thousand deaths worldwide as of August 19th, 2020. COVID-19 is caused by the SARS-CoV-2 virus. SARS-CoV-2 presents a surface "spike" protein that binds to the ACE2 receptor to infect host cells. In addition to the respiratory tract, SARS-Cov-2 can also infect cells of the oral mucosa, which also express the ACE2 receptor. The spike and ACE2 proteins are highly glycosylated with sialic acid modifications that direct viral-host interactions and infection. Maackia amurensis seed lectin (MASL) has a strong affinity for sialic acid modified proteins and can be used as an antiviral agent. Here, we report that MASL targets the ACE2 receptor, decreases ACE2 expression and glycosylation, suppresses binding of the SARS-CoV-2 spike protein, and decreases expression of inflammatory mediators by oral epithelial cells that cause ARDS in COVID-19 patients. This work identifies MASL as an agent with potential to inhibit SARS-CoV-2 infection and COVID-19 related inflammatory syndromes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA