Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 20(11): 1485-1490, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34059815

RESUMEN

Solid electrolytes hold great promise for enabling the use of Li metal anodes. The main problem is that during cycling, Li can infiltrate along grain boundaries and cause short circuits, resulting in potentially catastrophic battery failure. At present, this phenomenon is not well understood. Here, through electron microscopy measurements on a representative system, Li7La3Zr2O12, we discover that Li infiltration in solid oxide electrolytes is strongly associated with local electronic band structure. About half of the Li7La3Zr2O12 grain boundaries were found to have a reduced bandgap, around 1-3 eV, making them potential channels for leakage current. Instead of combining with electrons at the cathode, Li+ ions are hence prematurely reduced by electrons at grain boundaries, forming local Li filaments. The eventual interconnection of these filaments results in a short circuit. Our discovery reveals that the grain-boundary electronic conductivity must be a primary concern for optimization in future solid-state battery design.

2.
J Am Chem Soc ; 142(5): 2438-2447, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31927894

RESUMEN

Engineering a stable solid electrolyte interphase (SEI) is critical for suppression of lithium dendrites. However, the formation of a desired SEI by formulating electrolyte composition is very difficult due to complex electrochemical reduction reactions. Here, instead of trial-and-error of electrolyte composition, we design a Li-11 wt % Sr alloy anode to form a SrF2-rich SEI in fluorinated electrolytes. Density functional theory (DFT) calculation and experimental characterization demonstrate that a SrF2-rich SEI has a large interfacial energy with Li metal and a high mechanical strength, which can effectively suppress the Li dendrite growth by simultaneously promoting the lateral growth of deposited Li metal and the SEI stability. The Li-Sr/Cu cells in 2 M LiFSI-DME show an outstanding Li plating/stripping Coulombic efficiency of 99.42% at 1 mA cm-2 with a capacity of 1 mAh cm-2 and 98.95% at 3 mA cm-2 with a capacity of 2 mAh cm-2, respectively. The symmetric Li-Sr/Li-Sr cells also achieve a stable electrochemical performance of 180 cycles at an extremely high current density of 30 mA cm-2 with a capacity of 1 mAh cm-2. When paired with LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes, Li-Sr/LFP cells in 2 M LiFSI-DME electrolytes and Li-Sr/NMC811 cells in 1 M LiPF6 in FEC:FEMC:HFE electrolytes also maintain excellent capacity retention. Designing SEIs by regulating Li-metal anode composition opens up a new and rational avenue to suppress Li dendrites.

3.
Small ; 15(50): e1905849, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31833666

RESUMEN

High and balanced electronic and ionic transportation networks with nanoscale distribution in solid-state cathodes are crucial to realize high-performance all-solid-state lithium batteries. Using Cu2 SnS3 as a model active material, such a kind of solid-state Cu2 SnS3 @graphene-Li7 P3 S11 nanocomposite cathodes are synthesized, where 5-10 nm Cu2 SnS3 nanoparticles homogenously anchor on the graphene nanosheets, while the Li7 P3 S11 electrolytes uniformly coat on the surface of Cu2 SnS3 @graphene composite forming nanoscaled electron/ion transportation networks. The large amount of nanoscaled triple-phase boundary in cathode ensures high power density due to high ionic/electronic conductions and long cycle life due to uniform and reduced volume change of nano-Cu2 SnS3. The Cu2 SnS3 @graphene-Li7 P3 S11 cathode layer with 2.0 mg cm-2 loading in all-solid-state lithium batteries demonstrates a high reversible discharge specific capacity of 813.2 mAh g-1 at 100 mA g-1 and retains 732.0 mAh g-1 after 60 cycles, corresponding to a high energy density of 410.4 Wh kg-1 based on the total mass of Cu2 SnS3 @graphene-Li7 P3 S11 composite based cathode. Moreover, it exhibits excellent rate capability and high-rate cycling stability, showing reversible capacity of 363.5 mAh g-1 at 500 mA g-1 after 200 cycles. The study provides a new insight into constructing both electronic and ionic conduction networks for all-solid-state lithium batteries.

4.
Nat Mater ; 17(6): 543-549, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29662160

RESUMEN

Metallic zinc (Zn) has been regarded as an ideal anode material for aqueous batteries because of its high theoretical capacity (820 mA h g-1), low potential (-0.762 V versus the standard hydrogen electrode), high abundance, low toxicity and intrinsic safety. However, aqueous Zn chemistry persistently suffers from irreversibility issues, as exemplified by its low coulombic efficiency (CE) and dendrite growth during plating/ stripping, and sustained water consumption. In this work, we demonstrate that an aqueous electrolyte based on Zn and lithium salts at high concentrations is a very effective way to address these issues. This unique electrolyte not only enables dendrite-free Zn plating/stripping at nearly 100% CE, but also retains water in the open atmosphere, which makes hermetic cell configurations optional. These merits bring unprecedented flexibility and reversibility to Zn batteries using either LiMn2O4 or O2 cathodes-the former deliver 180 W h kg-1 while retaining 80% capacity for >4,000 cycles, and the latter deliver 300 W h kg-1 (1,000 W h kg-1 based on the cathode) for >200 cycles.

5.
Acc Chem Res ; 50(4): 1022-1031, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28300397

RESUMEN

Understanding of the thermodynamic and kinetic properties of electrode materials is of great importance to develop new materials for high performance rechargeable batteries. Compared with computational understanding of physical and chemical properties of electrode materials, experimental methods provide direct and convenient evaluation of these properties. Often, the information gained from experimental work can not only offer feedback for the computational methods but also provide useful insights for improving the performance of materials. However, accurate experimental quantification of some properties can still be challenging. Among them, chemical diffusion coefficient is one representative example. It is one of the most crucial parameters determining the kinetics of intercalation compounds, which are by far the dominant electrode type used in rechargeable batteries. Therefore, it is of significance to quantitatively evaluate this parameter. For this purpose, various electrochemical techniques have been invented, for example, galvanostatic intermittent titration technique (GITT), potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). One salient advantage of these electrochemical techniques over other characterization techniques is that some implicit thermodynamic and kinetic quantities can be linked with the readily measurable electrical signals, current, and voltage, with very high precision. Nevertheless, proper application of these techniques requires not just an understanding of the structure and chemistry of the studied materials but sufficient knowledge of the physical model for ion transport within solid host materials and the analysis method to solve for chemical diffusion coefficient. Our group has been focusing on using various electrochemical techniques to investigate battery materials, as well as developing models for studying some emerging materials. In this Account, the principles of the aforementioned four electrochemical techniques and the corresponding analytical equations for calculating the chemical diffusion coefficients are first briefly summarized, followed by a discussion of the hidden assumptions for deriving these analytical equations and the resulting limitations in their implementation. To address these limitations, various corrections have been made in the literature. Nevertheless, the phase transition behavior, which is the typical feature for many intercalation materials, is barely considered. Here we retrospect our previous work on developing a two-phase model for describing the phase transition behavior of some intercalation compounds and discuss how to obtain the chemical diffusion coefficients based on the model, using LiFePO4 as an example material. After that, we have a discussion on the methodology for using electrochemical techniques to investigate new material features. It is our hope that this Account can serve as a call for more endeavors into the development of novel electrochemical tools for battery research.

6.
J Am Chem Soc ; 139(29): 9775-9778, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28704997

RESUMEN

Rechargeable aqueous Zn/MnO2 battery chemistry in a neutral or mildly acidic electrolyte has attracted extensive attention recently because all the components (anode, cathode, and electrolyte) in a Zn/MnO2 battery are safe, abundant, and sustainable. However, the reaction mechanism of the MnO2 cathode remains a topic of discussion. Herein, we design a highly reversible aqueous Zn/MnO2 battery where the binder-free MnO2 cathode was fabricated by in situ electrodeposition of MnO2 on carbon fiber paper in mild acidic ZnSO4+MnSO4 electrolyte. Electrochemical and structural analysis identify that the MnO2 cathode experience a consequent H+ and Zn2+ insertion/extraction process with high reversibility and cycling stability. To our best knowledge, it is the first report on rechargeable aqueous batteries with a consequent ion-insertion reaction mechanism.

7.
Nano Lett ; 16(7): 4521-7, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27322663

RESUMEN

All-solid-state lithium-sulfur batteries (ASSLSBs) using highly conductive sulfide-based solid electrolytes suffer from low sulfur utilization, poor cycle life, and low rate performance due to the huge volume change of the electrode and the poor electronic and ionic conductivities of S and Li2S. The most promising approach to mitigate these challenges lies in the fabrication of a sulfur nanocomposite electrode consisting of a homogeneous distribution of nanosized active material, solid electrolyte, and carbon. Here, we reported a novel bottom-up method to synthesize such a nanocomposite by dissolving Li2S as the active material, polyvinylpyrrolidone (PVP) as the carbon precursor, and Li6PS5Cl as the solid electrolyte in ethanol, followed by a coprecipitation and high-temperature carbonization process. Li2S active material and Li6PS5Cl solid electrolyte with a particle size of ∼4 nm were uniformly confined in a nanoscale carbon matrix. The homogeneous nanocomposite electrode consisting of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic and electronic conductivities enabled a mechanical robust and mixed conductive (ionic and electronic conductive) sulfur electrode for ASSLSB. A large reversible capacity of 830 mAh/g (71% utilization of Li2S) at 50 mA/g for 60 cycles with a high rate performance was achieved at room temperature even at a high loading of Li2S (∼3.6 mg/cm(2)). This work provides a new strategy to design a mechanically robust, mixed conductive nanocomposite electrode for high-performance all-solid-state lithium sulfur batteries.

8.
Angew Chem Int Ed Engl ; 55(34): 9898-901, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27417442

RESUMEN

Aluminum metal is a promising anode material for next generation rechargeable batteries owing to its abundance, potentially dendrite-free deposition, and high capacity. The rechargeable aluminum/sulfur (Al/S) battery is of great interest owing to its high energy density (1340 Wh kg(-1) ) and low cost. However, Al/S chemistry suffers poor reversibility owing to the difficulty of oxidizing AlSx . Herein, we demonstrate the first reversible Al/S battery in ionic-liquid electrolyte with an activated carbon cloth/sulfur composite cathode. Electrochemical, spectroscopic, and microscopic results suggest that sulfur undergoes a solid-state conversion reaction in the electrolyte. Kinetics analysis identifies that the slow solid-state sulfur conversion reaction causes large voltage hysteresis and limits the energy efficiency of the system.

9.
Adv Mater ; 33(6): e2000751, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32812301

RESUMEN

All-solid-state lithium batteries (ASSLBs) are considered as the next generation electrochemical energy storage devices because of their high safety and energy density, simple packaging, and wide operable temperature range. The critical component in ASSLBs is the solid-state electrolyte. Among all solid-state electrolytes, the sulfide electrolytes have the highest ionic conductivity and favorable interface compatibility with sulfur-based cathodes. The ionic conductivity of sulfide electrolytes is comparable with or even higher than that of the commercial organic liquid electrolytes. However, several critical challenges for sulfide electrolytes still remain to be solved, including their narrow electrochemical stability window, the unstable interface between the electrolyte and the electrodes, as well as lithium dendrite formation in the electrolytes. Herein, the emerging sulfide electrolytes and preparation methods are reviewed. In particular, the required properties of the sulfide electrolytes, such as the electrochemical stabilities of the electrolytes and the compatible electrode/electrolyte interfaces are highlighted. The opportunities for sulfide-based ASSLBs are also discussed.

10.
ACS Appl Mater Interfaces ; 12(32): 36066-36071, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32687320

RESUMEN

All-solid-state lithium-sulfur batteries (ASSLSBs) hold great promise for safe and high-energy-density energy storage. However, developing high-performance sulfur cathodes has been proven difficult due to low electronic and ionic conductivities and large volume change of sulfur during charge and discharge. Here, we reported an approach to synthesize sulfur cathodes with a mixed electronic and ionic conductivity by infiltrating a solution consisting of Li3PS4 (LPS) solid electrolyte and S active material into a mesoporous carbon (CMK-3). This approach leads to a uniform dispersion of amorphous Li3PS7 (L3PS) catholyte in an electronically conductive carbon matrix, enabling high and balanced electronic/ionic conductivities in the cathode composite. The inherent porous structure of CMK-3 also helps to accommodate the strain/stress generated during the expansion and shrinkage of the active material. In sulfide-based all-solid-state batteries with Li metal as the anode, this cathode composite delivered a high capacity of 1025 mAh g-1 after 50 cycles at 60 °C at 1/8C. This work highlights the important role of high and balanced electronic and ionic conductivities in developing high-performance sulfur cathodes for ASSLSBs.

11.
ACS Appl Mater Interfaces ; 12(16): 18519-18525, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32216290

RESUMEN

All-solid-state lithium-sulfur batteries employing sulfur electrodes and a solid electrolyte at room temperature are still a great challenge owing to the low conductivities of sulfur cathodes. In this work, we report room temperature all-solid-state lithium-sulfur batteries using thin sulfur layer-embedded FeS2 (FeS2@S) microsphere composites as active materials in the FeS2@S-Li10GeP2S12-Super P cathode electrode. Setting the cut-off voltage between 1.5 and 2.8 V, only lithiation-delithiation reactions between L2FeS2 and FeSy and direct reaction between Li2S and S will occur, which avoids large volume change of FeS2 caused by the conversion reaction, leading to the structure integrity of FeS2@S. The resultant batteries exhibit excellent rate and cyclic performances, delivering specific capacities of 1120.9, 937.2, 639.7, 517.2, 361.5, and 307.0 mA h g-1 for the FeS2@S composite cathode, corresponding to the normalized capacities of 1645.5, 1252.9, 782.5, 700.2, 478.4, and 363.6 mA h g-1 for sulfur at 30, 50, 100, 500, 1000, and 5000 mA g-1, respectively. Besides, they can retain the normalized capacity of 430.7 mA h g-1 for sulfur at 1000 mA g-1 after 200 cycles at room temperature.

12.
Adv Mater ; 32(12): e1906427, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32058645

RESUMEN

Metallic lithium is the most competitive anode material for next-generation lithium (Li)-ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (CE) and short cycle life for Li metal batteries. Herein, the Li dendrite growth of metallic lithium anode is suppressed by forming a lithium fluoride (LiF)-enriched solid electrolyte interphase (SEI) through the lithiation of surface-fluorinated mesocarbon microbeads (MCMB-F) anodes. The robust LiF-enriched SEI with high interfacial energy to Li metal effectively promotes planar growth of Li metal on the Li surface and meanwhile prevents its vertical penetration into the LiF-enriched SEI from forming Li dendrites. At a discharge capacity of 1.2 mAh cm-2 , a high CE of >99.2% for Li plating/stripping in FEC-based electrolyte is achieved within 25 cycles. Coupling the pre-lithiated MCMB-F (Li@MCMB-F) anode with a commercial LiFePO4 cathode at the positive/negative (P/N) capacity ratio of 1:1, the LiFePO4 //Li@MCMB-F cells can be charged/discharged at a high areal capacity of 2.4 mAh cm-2 for 110 times at a negligible capacity decay of 0.01% per cycle.

13.
Nat Chem ; 11(9): 789-796, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31427766

RESUMEN

The importance of the solid-electrolyte interphase (SEI) for reversible operation of Li-ion batteries has been well established, but the understanding of its chemistry remains incomplete. The current consensus on the identity of the major organic SEI component is that it consists of lithium ethylene di-carbonate (LEDC), which is thought to have high Li-ion conductivity, but low electronic conductivity (to protect the Li/C electrode). Here, we report on the synthesis and structural and spectroscopic characterizations of authentic LEDC and lithium ethylene mono-carbonate (LEMC). Direct comparisons of the SEI grown on graphite anodes suggest that LEMC, instead of LEDC, is likely to be the major SEI component. Single-crystal X-ray diffraction studies on LEMC and lithium methyl carbonate (LMC) reveal unusual layered structures and Li+ coordination environments. LEMC has Li+ conductivities of >1 × 10-6 S cm-1, while LEDC is almost an ionic insulator. The complex interconversions and equilibria of LMC, LEMC and LEDC in dimethyl sulfoxide solutions are also investigated.

14.
ACS Appl Mater Interfaces ; 10(46): 39645-39650, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30284808

RESUMEN

All-solid-state sodium ion batteries (ASIBs) based on sulfide electrolytes are considered a promising candidate for large-scale energy storage. However, the limited cycle life of ASIBs largely restricts their practical application. Cycling-stable ASIBs can be achieved only if the designed cathode can simultaneously address challenges including insufficient interfacial contact, electrochemical and chemical instability between the electrode and electrolyte, and strain/stress during operation , rather than just addressing one or part of these challenges. Chevrel phase Mo6S8 has inherent high electronic conductivity and small volume change during sodiation/desodiation, and is chemically and electrochemically stable with the sulfide electrolyte, and therefore the only challenge of using Mo6S8 as the cathode for ASIBs is the insufficient contact between Mo6S8 and the solid electrolyte (SE). Herein, a thin layer of SE is coated on Mo6S8 using a solution method to achieve an intimate contact between Mo6S8 and the SE. Such a SE-coated Mo6S8 cathode enabled an ASIB with a high cycling performance (500 cycles), even much better than that of the liquid-electrolyte batteries with the Mo6S8 cathode. This work provides valuable insights for developing long-cycle life ASIBs.

15.
Sci Adv ; 4(12): eaau9245, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30588493

RESUMEN

Solid-state electrolytes (SSEs) are receiving great interest because their high mechanical strength and transference number could potentially suppress Li dendrites and their high electrochemical stability allows the use of high-voltage cathodes, which enhances the energy density and safety of batteries. However, the much lower critical current density and easier Li dendrite propagation in SSEs than in nonaqueous liquid electrolytes hindered their possible applications. Herein, we successfully suppressed Li dendrite growth in SSEs by in situ forming an LiF-rich solid electrolyte interphase (SEI) between the SSEs and the Li metal. The LiF-rich SEI successfully suppresses the penetration of Li dendrites into SSEs, while the low electronic conductivity and the intrinsic electrochemical stability of LiF block side reactions between the SSEs and Li. The LiF-rich SEI enhances the room temperature critical current density of Li3PS4 to a record-high value of >2 mA cm-2. Moreover, the Li plating/stripping Coulombic efficiency was escalated from 88% of pristine Li3PS4 to more than 98% for LiF-coated Li3PS4. In situ formation of electronic insulating LiF-rich SEI provides an effective way to prevent Li dendrites in the SSEs, constituting a substantial leap toward the practical applications of next-generation high-energy solid-state Li metal batteries.

16.
ACS Nano ; 12(4): 3360-3368, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29547263

RESUMEN

Room-temperature all-solid-state Na-S batteries (ASNSBs) using sulfide solid electrolytes are a promising next-generation battery technology due to the high energy, enhanced safety, and earth abundant resources of both sodium and sulfur. Currently, the sulfide electrolyte ASNSBs are fabricated by a simple cold-pressing process leaving with high residential stress. Even worse, the large volume change of S/Na2S during charge/discharge cycles induces additional stress, seriously weakening the less-contacted interfaces among the solid electrolyte, active materials, and the electron conductive agent that are formed in the cold-pressing process. The high and continuous increase of the interface resistance hindered its practical application. Herein, we significantly reduce the interface resistance and eliminate the residential stress in Na2S cathodes by fabricating Na2S-Na3PS4-CMK-3 nanocomposites using melting-casting followed by stress-release annealing-precipitation process. The casting-annealing process guarantees the close contact between the Na3PS4 solid electrolyte and the CMK-3 mesoporous carbon in mixed ionic/electronic conductive matrix, while the in situ precipitated Na2S active species from the solid electrolyte during the annealing process guarantees the interfacial contact among these three subcomponents without residential stress, which greatly reduces the interfacial resistance and enhances the electrochemical performance. The in situ synthesized Na2S-Na3PS4-CMK-3 composite cathode delivers a stable and highly reversible capacity of 810 mAh/g at 50 mA/g for 50 cycles at 60 °C. The present casting-annealing strategy should provide opportunities for the advancement of mechanically robust and high-performance next-generation ASNSBs.

17.
Adv Mater ; 30(3)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29194777

RESUMEN

Rechargeable magnesium/sulfur battery is of significant interest because its energy density (1700 Wh kg-1 and 3200 Wh L-1 ) is among the highest of all battery chemistries (lower than Li/O2 and Mg/O2 but comparable to Li/S), and Mg metal allows reversible operation (100% Coulombic efficiency) with no dendrite formation. This great promise is already justified in some early reports. However, lack of mechanistic study of sulfur reaction in the Mg cation environment has severely hindered our understanding and prevents effective measures for performance improvement. In this work, the very first systematic fundamental study on Mg/S system is conducted by combining experimental methods with computational approach. The thermodynamics and reaction pathway of sulfur cathode in MgTFSI2 -DME electrolyte, as well as the associated kinetics are thoroughly investigated. The results here reveal that sulfur undergoes a consecutive staging pathway in which the formation and chain-shortening of polysulfide occur at early stage accompanied by the dissolution of long-chain polysulfide, and solid-state transition from short-chain polysulfide to magnesium sulfide occurs at late stage. The former process is much faster than the latter due to the synergetic effect of the mediating effect of dissolved polysulfide and the fast diffusion of Mg ion in the amorphous intermediate.

18.
ACS Appl Mater Interfaces ; 10(17): 14767-14776, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29620854

RESUMEN

Magnesium redox chemistry is a very appealing "beyond Li ion chemistry" for realizing high energy density batteries due to the high capacity, low reduction potential, and most importantly, highly reversible and dendrite-free Mg metal anode. However, the progress of rechargeable Mg batteries has been greatly hindered by shortage of electrolytes with wide stability window, high ionic conductivity, and good compatibility with cathode materials. Unlike solid electrolyte interphase on Li metal anode, surface film formed by electrolyte decomposition in Mg batteries was considered to block Mg ion transport and passivate Mg electrode. For this reason, the attention of the community has been mainly focusing on surface layer free electrolytes, while reductively unstable salts/solvents are barely considered, despite many of them possessing all the necessary properties for good electrolytes. Here, for the first time, we demonstrate that the surface film formed by electrolyte decomposition can function as a solid electrolyte interphase (SEI). Using Mg/S chemistry as a model system, the SEI formation mechanism on Mg metal anode was thoroughly examined using electrochemical methods and surface chemistry characterization techniques such as EDX and XPS. On the basis of these results, a comprehensive view of the Mg/electrolyte interface that unifies both the SEI mechanism and the passivation layer mechanism is proposed. This new picture of surface layer on Mg metal anode in Mg batteries not only revolutionizes current understanding of Mg/electrolyte interface but also opens new avenues for electrolyte development by uncovering the potential of those reductively unstable candidates through interface design.

19.
Nat Commun ; 9(1): 2324, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899467

RESUMEN

Iron fluoride, an intercalation-conversion cathode for lithium ion batteries, promises a high theoretical energy density of 1922 Wh kg-1. However, poor electrochemical reversibility due to repeated breaking/reformation of metal fluoride bonds poses a grand challenge for its practical application. Here we report that both a high reversibility over 1000 cycles and a high capacity of 420 mAh g-1 can be realized by concerted doping of cobalt and oxygen into iron fluoride. In the doped nanorods, an energy density of ~1000 Wh kg-1 with a decay rate of 0.03% per cycle is achieved. The anion's and cation's co-substitutions thermodynamically reduce conversion reaction potential and shift the reaction from less-reversible intercalation-conversion reaction in iron fluoride to a highly reversible intercalation-extrusion reaction in doped material. The co-substitution strategy to tune the thermodynamic features of the reactions could be extended to other high energy conversion materials for improved performance.

20.
ACS Cent Sci ; 3(10): 1121-1128, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29104929

RESUMEN

Nonaqueous rechargeable magnesium (Mg) batteries suffer from the complicated and moisture-sensitive electrolyte chemistry. Besides electrolytes, the practicality of a Mg battery is also confined by the absence of high-performance electrode materials due to the intrinsically slow Mg2+ diffusion in the solids. In this work, we demonstrated a rechargeable aqueous magnesium ion battery (AMIB) concept of high energy density, fast kinetics, and reversibility. Using a superconcentration approach we expanded the electrochemical stability window of the aqueous electrolyte to 2.0 V. More importantly, two new Mg ion host materials, Li superconcentration approach we expanded the electrochemical stability window of the aqueous electrolyte to 2.0 V. More importantly, two new Mg ion host materials, Li3V2(PO4)3 and poly pyromellitic dianhydride, were developed and employed as cathode and anode electrodes, respectively. Based on comparisons of the aqueous and nonaqueous systems, the role of water is identified to be critical in the Mg ion mobility in the intercalation host but remaining little detrimental to its non-diffusion controlled process. Compared with the previously reported Mg ion cell delivers an unprecedented high power density of 6400 W kg ion cell delivers an unprecedented high power density of 6400 W kg while retaining 92% of the initial capacity after 6000 cycles, pushing the Mg ion cell to a brand new stage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA