Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Am Chem Soc ; 146(19): 13142-13150, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38578677

RESUMEN

Metal-carbon composites are extensively utilized as electrochemical catalysts but face critical challenges in mass production and stability. We report a scalable manufacturing process for ruthenium surface-embedded fabric electrocatalysts (Ru-SFECs) via conventional fiber/fabric manufacturing. Ru-SFECs have excellent catalytic activity and stability toward the hydrogen evolution reaction, exhibiting a low overpotential of 11.9 mV at a current density of 10 mA cm-2 in an alkaline solution (1.0 M aq KOH solution) with only a slight overpotential increment (6.5%) after 10,000 cycles, whereas under identical conditions, that of commercial Pt/C increases 6-fold (from 1.3 to 7.8 mV). Using semipilot-scale equipment, a protocol is optimized for fabricating continuous self-supported electrocatalytic electrodes. Tailoring the fiber processing parameters (tension and temperature) can optimize the structural development, thereby achieving good catalytic performance and mechanical integrity. These findings underscore the significance of self-supporting catalysts, offering a general framework for stable, binder-free electrocatalytic electrode design.

2.
Small ; 20(26): e2310722, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38229525

RESUMEN

Aqueous aluminum-ion batteries are attractive post-lithium battery technologies for large-scale energy storage in virtue of abundant and low-cost Al metal anode offering ultrahigh capacity via a three-electron redox reaction. However, state-of-the-art cathode materials are of low practical capacity, poor rate capability, and inadequate cycle life, substantially impeding their practical use. Here layered manganese oxide that is pre-intercalated with benzoquinone-coordinated aluminum ions (BQ-AlxMnO2) as a high-performance cathode material of rechargeable aqueous aluminum-ion batteries is reported. The coordination of benzoquinone with aluminum ions not only extends interlayer spacing of layered MnO2 framework but reduces the effective charge of trivalent aluminum ions to diminish their electrostatic interactions, substantially boosting intercalation/deintercalation kinetics of guest aluminum ions and improving structural reversibility and stability. When coupled with Zn50Al50 alloy anode in 2 m Al(OTf)3 aqueous electrolyte, the BQ-AlxMnO2 exhibits superior rate capability and cycling stability. At 1 A g-1, the specific capacity of BQ-AlxMnO2 reaches ≈300 mAh g-1 and retains ≈90% of the initial value for more than 800 cycles, along with the Coulombic efficiency of as high as ≈99%, outperforming the AlxMnO2 without BQ co-incorporation.

3.
Small ; : e2311509, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587968

RESUMEN

Developing robust non-platinum electrocatalysts with multifunctional active sites for pH-universal hydrogen evolution reaction (HER) is crucial for scalable hydrogen production through electrochemical water splitting. Here ultra-small ruthenium-nickel alloy nanoparticles steadily anchored on reduced graphene oxide papers (Ru-Ni/rGOPs) as versatile electrocatalytic materials for acidic and alkaline HER are reported. These Ru-Ni alloy nanoparticles serve as pH self-adaptive electroactive species by making use of in situ surface reconstruction, where surface Ni atoms are hydroxylated to produce bifunctional active sites of Ru-Ni(OH)2 for alkaline HER, and selectively etched to form monometallic Ru active sites for acidic HER, respectively. Owing to the presence of Ru-Ni(OH)2 multi-site surface, which not only accelerates water dissociation to generate reactive hydrogen intermediates but also facilitates their recombination into hydrogen molecules, the self-supported Ru90Ni10/rGOP hybrid electrode only takes overpotential of as low as ≈106 mV to deliver current density of 1000 mA cm-2, and maintains exceptional stability for over 1000 h in 1 m KOH. While in 0.5 m H2SO4, the Ru90Ni10/rGOP hybrid electrode exhibits acidic HER catalytic behavior comparable to commercially available Pt/C catalyst due to the formation of monometallic Ru shell. These electrochemical behaviors outperform some of the best Ru-based catalysts and make it attractive alternative to Pt-based catalysts toward highly efficient HER.

4.
Angew Chem Int Ed Engl ; 63(18): e202402327, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38467561

RESUMEN

Metallic zinc is a promising anode material for rechargeable aqueous multivalent metal-ion batteries due to its high capacity and low cost. However, the practical use is always beset by severe dendrite growth and parasitic side reactions occurring at anode/electrolyte interface. Here we demonstrate dynamic molecular interphases caused by trace dual electrolyte additives of D-mannose and sodium lignosulfonate for ultralong-lifespan and dendrite-free zinc anode. Triggered by plating and stripping electric fields, the D-mannose and lignosulfonate species are alternately and reversibly (de-)adsorbed on Zn metal, respectively, to accelerate Zn2+ transportation for uniform Zn nucleation and deposition and inhibit side reactions for high Coulombic efficiency. As a result, Zn anode in such dual-additive electrolyte exhibits highly reversible and dendrite-free Zn stripping/plating behaviors for >6400 hours at 1 mA cm-2, which enables long-term cycling stability of Zn||ZnxMnO2 full cell for more than 2000 cycles.

5.
Angew Chem Int Ed Engl ; 63(20): e202403017, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38429994

RESUMEN

Crafting single-atom catalysts (SACs) that possess "just right" modulated electronic and geometric structures, granting accessible active sites for direct room-temperature benzene oxidation is a coveted objective. However, achieving this goal remains a formidable challenge. Here, we introduce an innovative in situ phosphorus-immitting strategy using a new phosphorus source (phosphorus nitride, P3N5) to construct the phosphorus-rich copper (Cu) SACs, designated as Cu/NPC. These catalysts feature locally protruding metal sites on a nitrogen (N)-phosphorus (P)-carbon (C) support (NPC). Rigorous analyses, including X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS), validate the coordinated bonding of nitrogen and phosphorus with atomically dispersed Cu sites on NPC. Crucially, systematic first-principles calculations, coupled with the climbing image nudged-elastic-band (CI-NEB) method, provide a comprehensive understanding of the structure-property-activity relationship of the distorted Cu-N2P2 centers in Cu/NPC for selective oxidation of benzene to phenol production. Interestingly, Cu/NPC has shown more energetically favorable C-H bond activation compared to the benchmark Cu/NC SACs in the direct oxidation of benzene, resulting in outstanding benzene conversion (50.3 %) and phenol selectivity (99.3 %) at room temperature. Furthermore, Cu/NPC achieves a remarkable turnover frequency of 263 h-1 and mass-specific activity of 35.2 mmol g-1 h-1, surpassing the state-of-the-art benzene-to-phenol conversion catalysts to date.

6.
Acc Chem Res ; 55(1): 110-120, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34937339

RESUMEN

The catalytic conversion of energy-related small-molecules is a critical process in the fields of chemical production, environmental restoration, and energy conversion and storage. Over the years, numerous nanocatalytic materials have been explored in efforts to substantially boost the inherently sluggish catalytic processes. Despite achievements, the lack of fundamental insights into the design and identification of active sites and the structure-performance relationship has been one of the main obstacles to further improvement in catalytic performance. With the development of first-principles density functional theory (DFT) calculations and state-of-art spectroscopic techniques, the pace of research has started to move forward again.In this Account, we illustrate our recent representative attempts to gain fundamental insights into the rational development of efficient nanocatalytic materials and thus boost the typical electrochemical and mechanochemical conversions of energy-related small-molecules, including for the hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and ammonia synthesis. DFT calculations and advanced spectroscopic techniques, such as synchrotron radiation-based X-ray absorption spectroscopy (XAS, hard and soft X-ray), were properly adopted for this purpose.Specifically, to achieve a fast-electrochemical hydrogen evolution process, Ir active sites with balanced hydrogen adsorption/desorption behaviors were first computationally designed via orbital modulation and experimentally identified, and they showed significantly enhanced catalytic activity toward HER in acidic media. For the electrochemical reduction of oxygen, well-designed Zn-N2 active sites and quinone functional groups were introduced into the different carbon matrixes and structurally identified by the XAS technique, utilizing hard and soft X-rays, respectively. Both experimental and DFT studies revealed that Zn-N2 active sites with their unique structure can greatly activate the adsorbed oxygen species, leading to a highly efficient and selective four-electron oxygen reduction pathway, while the quinone functional groups are able to modify the activation mode and alter it into a selective two-electron oxygen reduction pathway for H2O2 production.In another study, inspired by the dissociation of stable nitrogen molecules on the surface of Fe, dynamic strained Fe active sites were designed for mechanochemical ammonia synthesis. Combined XAS and Mössbauer spectroscopy revealed the formation of a short-range Fe4N structure by the Fe active sites and dissociated nitrogen during the ball milling process, facilitating robust hydrogenation and ammonia production under mild conditions.Thanks to the theoretical methods and advanced spectroscopic techniques, fundamental insights into the design and identification of active sites and understanding of the structure-performance relationship can be easily obtained using such tools, which will guide the development of nanocatalytic materials and boost the conversions of energy-related small-molecules for various applications.

7.
J Am Chem Soc ; 144(43): 19973-19980, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36239442

RESUMEN

Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal degradation because of the lack of linker rigidity and physicochemical stability. Here, we report the synthesis of a conductive benzoxazole-linked COF/carbon hybrid material (BCOF-600C) by simple thermal annealing. The fused-aromatic benzoxazole and biphenyl building units endow the resulting COF with excellent physicochemical stability against high temperatures and strong acids/bases. This allows heat treatment to further enhance electrical conductivity with minimal structural alteration. The robust crystalline structure with periodically incorporated nitrogen atoms allowed platinum (Pt) atoms to be atomically integrated into the channel walls of BCOF-600C. The resulting electrocatalyst with well-defined active sites exhibited superior catalytic performance toward hydrogen evolution in acidic media.

8.
Angew Chem Int Ed Engl ; 61(18): e202117851, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35199437

RESUMEN

Carbon hydrogasification is the slowest reaction among all carbon-involved small-molecule transformations. Here, we demonstrate a mechanochemical method that results in both a faster reaction rate and a new synthesis route. The reaction rate was dramatically enhanced by up to 4 orders of magnitude compared to the traditional thermal method. Simultaneously, the reaction exhibited very high selectivity (99.8 % CH4 , versus 80 % under thermal conditions) with a cobalt catalyst. Our study demonstrated that this extreme increase in reaction rate originates from the continuous activation of reactive carbon species via mechanochemistry. The high selectivity is intimately related to the activation at low temperature, at which higher hydrocarbons are difficult to form. This work is expected to advance studies of carbon hydrogasification, and other solid-gas reactions.

9.
Angew Chem Int Ed Engl ; 59(52): 23678-23683, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-32959493

RESUMEN

Single atom catalysts (SACs) are of great importance for oxygen reduction, a critical process in renewable energy technologies. The catalytic performance of SACs largely depends on the structure of their active sites, but explorations of highly active structures for SAC active sites are still limited. Herein, we demonstrate a combined experimental and theoretical study of oxygen reduction catalysis on SACs, which incorporate M-N3 C1 site structure, composed of atomically dispersed transition metals (e.g., Fe, Co, and Cu) in nitrogenated carbon nanosheets. The resulting SACs with M-N3 C1 sites exhibited prominent oxygen reduction catalytic activities in both acidic and alkaline media, following the trend Fe-N3 C1 > Co-N3 C1 > Cu-N3 C1 . Theoretical calculations suggest the C atoms in these structures behave as collaborative adsorption sites to M atoms, thanks to interactions between the d/p orbitals of the M/C atoms in the M-N3 C1 sites, enabling dual site oxygen reduction.

10.
J Am Chem Soc ; 140(5): 1737-1742, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29298388

RESUMEN

Because they provide lower cost but comparable activity to precious platinum (Pt)-based catalysts, nonprecious iron (Fe)-based materials, such as Fe/Fe3C and Fe-N-C, have gained considerable attention as electrocatalysts for the oxygen reduction reaction (ORR). However, their practical application is hindered by their poor stability, which is attributed to the defective protection of extremely unstable Fe nanoparticles. Here, we introduce a synthesis strategy for a stable Fe-based electrocatalyst, which was realized by defect-free encapsulation of Fe nanoparticles using a two-dimensional (2D) phenazine-based fused aromatic porous organic network (Aza-PON). The resulting Fe@Aza-PON catalyst showed electrocatalytic activity (half-wave potential, 0.839 V; Tafel slope, 60 mV decade-1) comparable to commercial Pt on activated carbon (Pt/C, 0.826 V and 90 mV decade-1). More importantly, the Fe@Aza-PON displayed outstanding stability (zero current loss even after 100 000 cycles) and tolerance against contamination (methanol and CO poisoning). In a hybrid Li-air battery test, the Fe@Aza-PON demonstrated performance superior to Pt/C.

11.
Angew Chem Int Ed Engl ; 57(43): 14139-14143, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30207028

RESUMEN

A novel synthesis strategy is demonstrated to prepare Mo3 P/Mo nanobelts with porous structure for the first time. The growth and formation mechanism of the porous Mo3 P/Mo nanobelt structure was disclosed by varying the contents of H2 /PH3 and the reaction temperature. During the hydrogen evolution reaction (HER) catalysis, the optimized porous Mo3 P/Mo nanobelts exhibited a small overpotential of 78 mV at a current density of 10 mA cm-2 and a low Tafel slope of 43 mV dec-1 , as well as long-term stability in alkaline media, surpassing Pt wire. Density functional theory (DFT) calculations reveal that the H2 O dissociation on the surface of Mo3 P is favorable during the HER.

12.
Small ; 13(40)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28783231

RESUMEN

Iron (Fe)-doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one-step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe-doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER.

13.
ChemSusChem ; 17(13): e202400295, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38362788

RESUMEN

Ongoing research to develop advanced electrocatalysts for the oxygen evolution reaction (OER) is needed to address demand for efficient energy conversion and carbon-free energy sources. In the OER process, acidic electrolytes have higher proton concentration and faster response than alkaline ones, but their harsh strongly acidic environment requires catalysts with greater corrosion and oxidation resistance. At present, iridium oxide (IrO2) with its strong stability and excellent catalytic performance is the catalyst of choice for the anode side of commercial PEM electrolysis cells. However, the scarcity and high cost of iridium (Ir) and the unsatisfactory activity of IrO2 hinder industrial scale application and the sustainable development of acidic OER catalytic technology. This highlights the importance of further research on acidic Ir-based OER catalysts. In this review, recent advances in Ir-based acidic OER electrocatalysts are summarized, including fundamental understanding of the acidic OER mechanism, recent insights into the stability of acidic OER catalysts, highly efficient Ir-based electrocatalysts, and common strategies for optimizing Ir-based catalysts. The future challenges and prospects of developing highly effective Ir-based catalysts are also discussed.

14.
Adv Mater ; 36(26): e2403803, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598181

RESUMEN

Aqueous zinc-ion batteries are attractive post-lithium battery technologies for grid-scale energy storage because of their inherent safety, low cost and high theoretical capacity. However, their practical implementation in wide-temperature surroundings persistently confronts irregular zinc electrodeposits and parasitic side reactions on metal anode, which leads to poor rechargeability, low Coulombic efficiency and short lifespan. Here, this work reports lamellar nanoporous Cu/Al2Cu heterostructure electrode as a promising anode host material to regulate high-efficiency and dendrite-free zinc electrodeposition and stripping for wide-temperatures aqueous zinc-ion batteries. In this unique electrode, the interconnective Cu/Al2Cu heterostructure ligaments not only facilitate fast electron transfer but work as highly zincophilic sites for zinc nucleation and deposition by virtue of local galvanic couples while the interpenetrative lamellar channels serving as mass transport pathways. As a result, it exhibits exceptional zinc plating/stripping behaviors in aqueous hybrid electrolyte of diethylene glycol dimethyl ether and zinc trifluoromethanesulfonate at wide temperatures ranging from 25 to -30 °C, with ultralow voltage polarizations at various current densities and ultralong lifespan of >4000 h. The outstanding electrochemical properties enlist full cell of zinc-ion batteries constructed with nanoporous Cu/Al2Cu and ZnxV2O5/C to maintain high capacity and excellent stability for >5000 cycles at 25 and -30 °C.

15.
ChemSusChem ; 16(22): e202300459, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37300339

RESUMEN

Hydrogen is a promising clean energy source, an alternative to fossil fuels, and can potentially play a crucial role in reducing carbon emissions. The transportation and storage of hydrogen are the biggest hurdles to realizing a hydrogen economy. Ammonia is considered to be one of the most promising hydrogen carriers, because of its high hydrogen content and easy liquefaction in mild conditions. To date, ammonia is mostly produced by the 'thermocatalytic' Haber-Bosch process, which requires high temperature and pressure. As a result, it can only produce ammonia in 'centralized' manufacturing systems. Mechanochemistry, a newly emerging method for efficient ammonia synthesis, offers potential advantages over the Haber-Bosch process. Mechanochemical ammonia synthesis under near ambient conditions can be connected with 'localized' sustainable energy systems. In this perspective, the state-of-the-art mechanochemical ammonia synthesis processes will be introduced. Challenges and opportunities are also discussed in relation to its role in a hydrogen economy.

16.
ACS Nano ; 17(23): 24282-24289, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38009580

RESUMEN

Efficient and stable catalysts are highly desired for the electrochemical conversion of hydrogen, oxygen, and water molecules, processes which are crucial for renewable energy conversion and storage technologies. Herein, we report the development of hollow nitrogenated carbon sphere (HNC) dispersed rhodium (Rh) single atoms (Rh1HNC) as an efficient catalyst for bifunctional catalysis. The Rh1HNC was achieved by anchoring Rh single atoms in the HNC matrix with an Rh-N3C1 configuration, via a combination of in situ polymerization and carbonization approach. Benefiting from the strong metal atom-support interaction (SMASI), the Rh and C atoms can collaborate to achieve robust electrochemical performance toward both the hydrogen evolution and oxygen reduction reactions in acidic media. This work not only provides an active site with favorable SMASI for bifunctional catalysis but also brings a strategy for the design and synthesis of efficient and stable bifunctional catalysts for diverse applications.

17.
Nat Commun ; 14(1): 1811, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002220

RESUMEN

Developing robust nonprecious-metal electrocatalysts with high activity towards sluggish oxygen-evolution reaction is paramount for large-scale hydrogen production via electrochemical water splitting. Here we report that self-supported laminate composite electrodes composed of alternating nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride (FeCo/CeO2-xNx) heterolamellas hold great promise as highly efficient electrocatalysts for alkaline oxygen-evolution reaction. By virtue of three-dimensional nanoporous architecture to offer abundant and accessible electroactive CoFeOOH/CeO2-xNx heterostructure interfaces through facilitating electron transfer and mass transport, nanoporous FeCo/CeO2-xNx composite electrodes exhibit superior oxygen-evolution electrocatalysis in 1 M KOH, with ultralow Tafel slope of ~33 mV dec-1. At overpotential of as low as 360 mV, they reach >3900 mA cm-2 and retain exceptional stability at ~1900 mA cm-2 for >1000 h, outperforming commercial RuO2 and some representative oxygen-evolution-reaction catalysts recently reported. These electrochemical properties make them attractive candidates as oxygen-evolution-reaction electrocatalysts in electrolysis of water for large-scale hydrogen generation.

18.
ACS Nano ; 17(3): 2923-2931, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36722955

RESUMEN

Single atom catalysts (SACs) with isolated active sites exhibit the highest reported mass activity for hydrogen evolution catalysis, which is crucial for practical applications. Here, we demonstrate that ultrahigh mass activity can also be achieved by rationally merging the isolated platinum (Pt) active sites in SAC. The catalyst was obtained by the thermodynamically driven diffusing and merging phosphorus-doped carbon (PC) supported Pt single atoms (Pt1@PC) into Pt nanoclusters (PtM@PC). X-ray absorption spectroscopy analysis revealed that the merged nanoclusters exhibit much stronger interactions with the support than the traditional method, enabling more efficient electron transfer. The optimized PtM@PC exhibited an order of magnitude higher mass activity (12.7 A mgPt-1) than Pt1@PC (0.9 A mgPt-1) at an overpotential of 10 mV in acidic media, which is the highest record to date, far exceeding reports for other outstanding SACs. Theoretical study revealed that the collective active sites in PtM@PC exhibit both favorable hydrogen binding energy and fast reaction kinetics, leading to the significantly enhanced mass activity. Despite its low Pt content (2.2 wt %), a low hydrogen production cost of ∼3 USD kg-1 was finally achieved in the full-water splitting at a laboratory scale.

19.
Nat Commun ; 14(1): 2319, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37087491

RESUMEN

Potassium oxide (K2O) is used as a promotor in industrial ammonia synthesis, although metallic potassium (K) is better in theory. The reason K2O is used is because metallic K, which volatilizes around 400 °C, separates from the catalyst in the harsh ammonia synthesis conditions of the Haber-Bosch process. To maximize the efficiency of ammonia synthesis, using metallic K with low temperature reaction below 400 °C is prerequisite. Here, we synthesize ammonia using metallic K and Fe as a catalyst via mechanochemical process near ambient conditions (45 °C, 1 bar). The final ammonia concentration reaches as high as 94.5 vol%, which was extraordinarily higher than that of the Haber-Bosch process (25.0 vol%, 450 °C, 200 bar) and our previous work (82.5 vol%, 45 °C, 1 bar).

20.
ACS Nano ; 16(11): 18830-18837, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36264779

RESUMEN

The oxygen reduction reaction is essential for fuel cells and metal-air batteries in renewable energy technologies. Developing platinum-group-metal (PGM)-free catalysts with comparable catalytic performance is highly desired for cost efficiency. Here, we report a tin (Sn) nanocluster confined catalyst for the electrochemical oxygen reduction. The catalyst was fabricated by confining 1-1.5 nm sized Sn nanoclusters in situ in microporous nitrogen-doped carbon polyhedra (SnxNC) with an average pore size of 0.7 nm. SnxNC exhibited high catalytic performance in acidic media, including positive onset and half-wave potentials, comparable to those of the state-of-the-art Pt/C and far exceeding those of the Sn single-atom catalyst. Combined structural and theoretical analyses reveal that the confined Sn nanoclusters, which have favorable oxygen adsorption behaviors, are responsible for the high catalytic performance, but not Sn single atoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA