RESUMEN
Little is known about the blood-feeding physiology of arbovirus vector Aedes aegypti although this type of mosquito is known to transmit infectious diseases dengue, Zika, yellow fever, and chikungunya. Blood feeding in the female A. aegypti mosquito is essential for egg maturation and for transmission of disease agents between human subjects. Here, we identify the A. aegypti sulfakinin receptor gene SKR from the A. aegypti genome and show that SKR is expressed at different developmental stages and in varied anatomical localizations in the adult mosquito (at three days after eclosion), with particularly high expression in the CNS. Knockingdown sulfakinin and sulfakinin receptor gene expression in the female A. aegypti results in increased blood meal intake, but microinjection in the thorax of the sulfakinin peptide 1 and 2 both inhibits dose dependently blood meal intake (and delays the time course of blood intake), which is reversible with receptor antagonist. Sulfakinin receptor expressed ectopically in mammalian cells CHO-K1 responds to sulfakinin stimulation with persistent calcium spikes, blockable with receptor antagonist. These data together suggest that activation of the Gq protein-coupled (i.e., calcium-mobilizing) sulfakinin receptor inhibits blood meal intake in female A. aegypti mosquitoes and could serve as a strategic node for the future control of A. aegypti mosquito reproduction/population and disease transmission.
Asunto(s)
Aedes , Receptores Acoplados a Proteínas G , Animales , Aedes/metabolismo , Aedes/genética , Femenino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Células CHO , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Cricetulus , Conducta Alimentaria/fisiología , Mosquitos VectoresRESUMEN
O6-Methylguanine-DNA-methyltransferase (MGMT) is a demethylation protein that dynamically regulates the O6-methylguanine modification (O6 MeG), and dysregulated MGMT is implicated in various malignant tumors. Herein, we integrate demethylation-activated DNAzyme with a single quantum dot nanosensor to sensitively detect MGMT in breast tissues. The presence of MGMT induces the demethylation of the O6 MeG-caged DNAzyme and the restoration of catalytic activity. The activated DNAzyme then specifically cleaves the ribonucleic acid site of hairpin DNA to expose toehold sequences. The liberated toehold sequence may act as a primer to trigger a cyclic exponential amplification reaction for the generation of enormous signal strands that bind with the Cy5/biotin-labeled probes to form sandwich hybrids. The assembly of sandwich hybrids onto 605QD obtains 605QD-dsDNA-Cy5 nanostructures, inducing efficient FRET between the 605QD donor and Cy5 acceptor. Notably, the introduction of a mismatched base in hairpin DNA can greatly minimize the background and improve the signal-to-noise ratio. This nanosensor achieves a dynamic range of 1.0 × 10-8 to 0.1 ng/µL and a detection limit of 155.78 aM, and it can screen MGMT inhibitors and monitor cellular MGMT activity with single-cell sensitivity. Moreover, it can distinguish the MGMT level in tissues of breast cancer patients and healthy persons, holding great potential in clinical diagnostics and epigenetic research studies.
Asunto(s)
Carbocianinas , ADN Catalítico , Guanina/análogos & derivados , Puntos Cuánticos , Humanos , ADN Catalítico/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , ADN/química , DesmetilaciónRESUMEN
Arylalkylamine N-acetyltransferase (aaNAT) is a crucial enzyme that catalyses the transfer of acetyl groups from acetyl coenzyme A to arylalkylamines and arylamines. Evolutionary studies have identified a distinct class of aaNATs specific to mosquitoes, yet their functions remain elusive. This study focuses on Ae-aaNAT7, a mosquito-unique gene in Aedes aegypti (Diptera:Culicidae), to explore its functionality. Temporal and spatial expression analysis of Ae-aaNAT7 mRNA revealed high expression during embryonic development and in first-instar larvae, with notable expression in the limbs of adult mosquitoes based on tissue expression profiling. By further employing CRISPR/Cas9 technology for loss-of-function studies, our investigation revealed a reduction in the area of white spotting in the limbs of Ae-aaNAT7 mutant adult mosquitoes. Further investigation revealed a significant decrease in the fecundity and hatchability of the mutants. Dissection of the ovaries from Ae-aaNAT7 heterozygous mutants showed a noticeable reduction in the oocyte area compared with wild type. Dissection of the exochorion of the eggs from Ae-aaNAT7 homozygous mutants consistently revealed a striking absence of mature embryos. In addition, RNA interference experiments targeting Ae-aaNAT7 in males resulted in a reduction in fecundity, but no effect on hatchability was observed. These collective insights underscore the substantial impact of Ae-aaNAT7 on reproduction and its pivotal contribution to adult limb pigmentation in Ae. aegypti. These revelations offer insights pivotal for the strategic design of future insecticide targets.
RESUMEN
Based on the interaction of polyaluminum chloride (PAC) and chitosan (CTS) at the molecular level, an organic/inorganic composite material was designed for the preparation of alkyl ketene dimer (AKD) emulsion. This paper aimed to explore the influence of PAC/CTS on the physicochemical properties, microstructure, and sizing efficiency of AKD emulsions. The PAC/CTS complex forms a denser adsorption layer at the oil-water interface at the microscopic level. With the increase in CTS concentration, the AKD emulsions displayed excellent stability after high-speed centrifugation. In addition, the addition of CTS can effectively improve the sizing efficiency of the emulsion. Therefore, this study proposed a strategy of PAC/CTS as an emulsifier, and the related interaction mechanism was explored, which further expands the application of inorganic/organic composites in the field of colloidal chemistry.
RESUMEN
The aim of this study is to report the risk factors of severe statin induced liver injury (SILI). From the database of Shandong ADR Monitoring Center and Outpatients and inpatients in our hospital, SILI cases reported from 2013 to 2021 were extracted and screened. The diagnostic criteria of SILI, the inclusion and exclusion criteria of severe and general SILI were established separately. After the SILI cases were selected and confirmed, the socio-demographic and clinical characteristics were collected. Single factor chi-square test and multi-factor unconditional logistic regression analysis were used to analyze the influencing factors of severe SILI. From 1391 reported cases, 1211 met SILI diagnostic criteria, of which 157 were severe SILI and 964 were general SILI. Univariate analysis showed that age, drug combination, statin category were the influencing factors of severe SILI (p<0.1). Multivariate logistic analysis showed that drug combination and statin category were the influencing factors of severe SILI (p<0.05). Atorvastatin caused the most serious SILI, and its risk is 1.77 times higher than rosuvastatin. The serious SILI risk of drug combination was 2.08 times higher than statin alone. The patient with these factors should be monitored intensively during clinical treatment, to ensure their medication safety.
RESUMEN
Oral microbiota is vital for human health and can be affected by various factors (i.e. diets, ethnicity). However, few studies have compared oral microbiota of individuals from different nationalities in the same environment. Here, we explored the assembly and interaction of oral microbial communities of Chinese and Pakistanis in one university. Firmicutes and Proteobacteria were the predominant microorganisms in the oral cavity of Chinese and Pakistanis. Streptococcus and Neisseria were the dominant genera of China, while Streptococcus and Haemophilus were the dominant genera of Pakistanis. In addition, the oral community membership and structure were not influenced by season, Chinese/Pakistani student and gender, reflecting the stability of the human oral microbiome. The beta diversity of oral microbiomes between Chinese and Pakistanis significantly differed in winter, but not in spring. The alpha diversity of Chinese students and Pakistani students was similar. Moreover, oral microbial community of both Chinese and Pakistani students was mainly driven by stochastic processes. The microbial network of Chinese was more complexity and stability than that of Pakistanis. Our study uncovers the characteristics of human oral microbiota, which is of great significance for oral and human health.
Asunto(s)
Pueblos del Este de Asia , Microbiota , Boca , Personas del Sur de Asia , Humanos , China , Consorcios Microbianos , Pakistán , Boca/microbiología , Estudiantes , UniversidadesRESUMEN
This study investigated the function of the MDR49 gene in Aedes aegypti. MDR49 mutants were constructed using CRISPR/Cas9 technology; the mutation led to increased sensitivity to ivermectin (LC50: from 1.3090 mg L-1 to 0.5904 mg L-1), and a reduction in midgut trypsin activity. These findings suggest that the P-gp encoded by MDR49 confers resistance to ivermectin and impacts the reproductive function in Ae. aegypti. RNA interference technology showed that knockdown of MDR49 gene resulted in a significant decrease in the expression of VGA1 after a blood meal, as well as a decrease in the number of eggs laid and their hatching rate. LC-MS revealed that following ivermectin treatment, the MDR493d+2s/3d+2s strain larvae exhibited significantly higher drug concentrations in the head and fat body compared to the wild type. Modeling of inward-facing P-gp and molecular docking found almost no difference in the affinity of P-gp for ivermectin before and after the mutation. However, modeling of the outward-facing conformation demonstrated that the flexible linker loop between TM5 and TM6 of P-gp undergoes changes after the mutation, resulting in a decrease in trypsin activity and an increase in sensitivity to ivermectin. These results provide useful insights into ivermectin resistance and the other roles played by the MDR49 gene.
Asunto(s)
Aedes , Proteínas de Insectos , Ivermectina , Animales , Aedes/efectos de los fármacos , Aedes/genética , Aedes/metabolismo , Ivermectina/farmacología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Tripsina/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Fertilidad/efectos de los fármacos , Resistencia a los Insecticidas/genética , Inhibidores de Tripsina/metabolismo , Inhibidores de Tripsina/farmacología , Simulación del Acoplamiento Molecular , Insecticidas/farmacologíaRESUMEN
The response patterns of microbial functional genes involved in biogeochemical cycles to cadaver decay is a central topic of recent environmental sciences. However, the response mechanisms and pathways of the functional genes associated with the carbon (C) and nitrogen (N) cycling to cadaveric substances such as cadaverine and putrescine remain unclear. This study explored the variation of functional genes associated with C fixation, C degradation and N cycling and their influencing factors under cadaverine, putrescine and mixed treatments. Our results showed only putrescine significantly increased the alpha diversity of C fixation genes, while reducing the alpha diversity of N cycling genes in sediment. For the C cycling, the mixed treatment significantly decreased the total abundance of reductive acetyl-CoA pathway genes (i.e., acsB and acsE) and lig gene linked to lignin degradation in water, while only significantly increasing the hydroxypropionate-hydroxybutylate cycle (i.e., accA) gene abundance in sediment. For the N cycling, mixed treatment significantly decreased the abundance of the nitrification (i.e., amoB), denitrification (i.e., nirS3) genes in water and the assimilation pathway gene (i.e., gdhA) in sediment. Environmental factors (i.e., total carbon and total nitrogen) were all negatively associated with the genes of C and N cycling. Therefore, cadaverine and putrescine exposure may inhibit the pathway in C fixation and N cycling, while promoting C degradation. These findings can offer some new insight for the management of amine pollution caused by animal cadavers.
Asunto(s)
Carbono , Putrescina , Humanos , Animales , Cadaverina , Agua , Ríos/química , Sedimentos Geológicos/química , Ciclo del Nitrógeno , NitrógenoRESUMEN
The ovarian germline stem cells(OGSCs) cultured in the optimized culture system were used as the research object to observe the effect of Tripterygium glycosides(TG) on OGSCs and explore the mechanism of reproductive toxicity by the Notch signaling pathway. Cell counting kit-8(CCK-8) was used to observe the viability level of OGSCs in mice cultured in vitro by TG of 3.75, 7.5, and 15 µg·mL~(-1). Immunofluorescence technology and reverse transcription-polymerase chain reaction(RT-PCR) were used to detect the protein and gene expression level of OGSCs marker mouse vasa homologue(MVH) and octamer-binding transcription factor 4(Oct4) by TG of 3.75 µg·mL~(-1). RT-PCR detected the gene expression of neurogenic locus Notch homolog protein 1(Notch1), Hes family BHLH transcription factor 1(Hes1), and jagged canonical Notch ligand 1(Jagged1). The RNA was extracted for transcriptome analysis to analyze the mechanism of action of TG intervention on OGSCs. 3.75 µg·mL~(-1) of TG was combined with 40 ng·mL~(-1) Notch signaling pathway γ-secretagocin agonist jagged canonical notch ligand(Jagged) for administration. CCK-8 was used to detect the viability level of OGSCs. Double immunofluorescence technology was used to detect the protein co-expression of MVH with Hes1, Notch1, and Jagged1. The results showed that compared with the blank group, the TG administration group significantly inhibited the activity of OGSCs(P<0.01 or P<0.001). It could reduce the protein and gene expression of OGSC markers, namely MVH and Oct4(P<0.05, P<0.01, or P<0.001). It could significantly inhibit the gene expression of Notch1, Hes1, and Jagged1(P<0.001). Transcriptomic analysis showed that TG affected the growth and proliferation of OGSCs by intervening Jagged1, a ligand associated with the Notch signaling pathway. The experimental results showed that the combination of Notch signaling pathway γ-secretagorein agonist Jagged could significantly alleviate the decrease in OGSC viability induced by TG(P<0.001) and significantly increased the OGSC viability compared with the TG group(P<0.001). It also could significantly increase the co-expression of MVH/Jagged1, MVH/Hes1, and MVH/Notch1 proteins(P<0.01 or P<0.001). It suggested that TG play the role of γ-secretagorease inhibitors by downregulating the OGSC markers including MVH and Oct4 and Notch signaling pathway molecules such as Notch1, Hes1, and Jagged1, participate in the OGSC pathway, and mediate reproductive toxicity caused by the Notch signaling pathway.
Asunto(s)
Células Madre Oogoniales , Ratones , Animales , Células Madre Oogoniales/metabolismo , Tripterygium , Ligandos , Transducción de SeñalRESUMEN
Analogous to electronic transistors, transistor-like responsive materials undergo sharp structural transitions in response to a very narrow range of microenvironment signals. This kind of material is typically limited to synthetic polymer-derived nanoscale assembly or disassembly and has profound implications for modern high-tech applications. Herein, we evolve this system from synthetic polymers to biopolymers and extend the corresponding assembly scale from the nanoscale to meso/macro-scale. We develop unique protein nanocrystals with core-shell structures through a two-step nucleation process. The protein nanocrystals exhibit exceptional transistor-like pH-responsive mesoscale assembly through the formation of inter-particle ß-sheet linkers. This allows ultrasensitive cross-linking behavior, such as self-coacervation at a water/water interface, ultrafast gelation in seconds, and ultrasensitive swelling for detection of basic vapors at extremely low concentrations. This breakthrough has great promise for broader applications such as drug encapsulation and delivery, biosensing, cytomimetic materials, and microfluidic chemistry.
Asunto(s)
Nanopartículas , Nanopartículas/química , Polímeros/química , Conformación Proteica , Agua , Concentración de Iones de HidrógenoRESUMEN
BACKGROUND: The behaviors and ontogeny of Aedes aegypti are closely related to the spread of diseases caused by dengue (DENV), chikungunya (CHIKV), Zika (ZIKV), and yellow fever (YFV) viruses. During the life cycle, Ae. aegypti undergoes drastic morphological, metabolic, and functional changes triggered by gene regulation and other molecular mechanisms. Some essential regulatory factors that regulate insect ontogeny have been revealed in other species, but their roles are still poorly investigated in the mosquito. RESULTS: Our study identified 6 gene modules and their intramodular hub genes that were highly associated with the ontogeny of Ae. aegypti in the constructed network. Those modules were found to be enriched in functional roles related to cuticle development, ATP generation, digestion, immunity, pupation control, lectins, and spermatogenesis. Additionally, digestion-related pathways were activated in the larvae and adult females but suppressed in the pupae. The integrated proteinâprotein network also identified cilium-related genes. In addition, we verified that the 6 intramodular hub genes encoding proteins such as EcKinase regulating larval molt were only expressed in the larval stage. Quantitative RTâPCR of the intramodular hub genes gave similar results as the RNA-Seq expression profile, and most hub genes were ontogeny-specifically expressed. CONCLUSIONS: The constructed gene coexpression network provides a useful resource for network-based data mining to identify candidate genes for functional studies. Ultimately, these findings will be key in identifying potential molecular targets for disease control.
Asunto(s)
Aedes , Dengue , Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , Masculino , Animales , Femenino , Fiebre Amarilla/genética , Virus Zika/genética , Redes Reguladoras de Genes , Mosquitos Vectores , Proteínas/genética , LarvaRESUMEN
N6-Methyladenosine (m6A) demethylases can catalyze the removal of the methyl modification on m6A, and it is closely associated with the occurrence, proliferation, differentiation, and metastasis of malignancies. The m6A demethylases (e.g., fat mass and obesity-associated protein (FTO)) may act as a cancer biomarker and are crucial for anticancer drug screening and early clinical diagnosis. Herein, we demonstrate the construction of a quantum-dot-based Förster resonance energy-transfer (FRET) nanosensor through direct encoding of streptavidin-binding RNA aptamers (SA aptamers) for m6A demethylase detection. This nanosensor employs multiple Cy5-molecule-labeled SA aptamers as the building materials to construct the 605QD-RNA-Cy5 nanoassembly, and it exploits the hinder effect of m6A upon elongation and ligation reactions to distinguish m6A-containing RNA probes from demethylated RNA probes. When m6A demethylase is present, the m6A-containing RNA probes are demethylated to generate the demethylated RNA probes, initiating strand extension and ligation reactions to yield a complete transcription template for SA aptamers. Subsequently, a T7-assisted cascade transcription amplification reaction is activated to transcribe abundant SA aptamers with the incorporation of multiple Cy5 fluorophores. The Cy5-incorporated SA aptamers can self-assembly onto the streptavidin-coated 605QD surface to obtain the 605QD-SA aptamer-Cy5 nanoassemblies, resulting in the generation of distinct FRET signals. This nanosensor exhibits ultrahigh sensitivity and excellent specificity, and it can detect endogenous FTO at the single-cell level. Furthermore, this nanosensor can precisely measure enzyme kinetic parameters, screen m6A demethylase inhibitors, and differentiate the FTO expression between breast cancer patients and healthy individual tissues, offering a versatile platform for clinical diagnostic and drug discovery.
Asunto(s)
Aptámeros de Nucleótidos , Humanos , Estreptavidina , Transferencia Resonante de Energía de Fluorescencia , Sondas ARN , Adenosina , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genéticaRESUMEN
OBJECTIVE: To explore whether cytokines could be potential biomarkers to predict the occurrence of progressive fibrosis (PF) phenotype among interstitial pneumonia with autoimmune features (IPAF) patients. METHODS: This study prospectively collected 51 IPAF and 15 Idiopathic Pulmonary Fibrosis (IPF) patients who were diagnosed at First Affiliated Hospital of Guangzhou Medical University from July 2020 to June 2021. All IPAF patients were followed up for one year to assess the development of PF phenotype. Paired Broncho Alveolar Lavage Fluid (BALF) and serum samples were collected at enrolment and analyzed for differences in 39 cytokines expression. Principal component analysis (PCA) and cluster analysis were conducted to identify a high-risk subgroup of IPAF patients for developing the PF phenotype. Finally, cytokine differences were compared between subgroups to identify potential biomarkers for PF-IPAF occurrence. RESULTS: According to the PCA analysis, 81.25% of PF-IPAF patients share overlapped BALF cytokine profiles with IPF. Cluster analysis indicated IPAF patients in subtype 2 had a higher risk to develop PF phenotype within one year (P = 0.048), characterized by higher levels of CCL2, CXCL12 and lower lymphocyte proportion (LYM%) in BALF. Elevated levels of BALF CCL2 (>299.16 pg./ml) or CXCL12 (>600.115 pg./ml) were associated with a significantly higher risk of developing PF phenotype within one year follow-up period (P = 0.009, 0.001). CONCLUSION: PF-IPAF phenotype exhibits similar inflammatory cytokine profiles to IPF. Cytokine CCL2, CXCL12, and LYM% in BALF serving as potential biomarkers for predicting the PF phenotype in IPAF patients. CLINICAL TRIAL REGISTRATION: Register: Qian Han, Website: http://www.chictr.org.cn/showproj.aspx?proj=61619, Registration number: ChiCTR2000040998.
RESUMEN
BACKGROUND: Spontaneous intracerebral hemorrhage (ICH) is a devastating form of stroke with high morbidity, disability and mortality. Helicobacter pylori is a major pathogen responsible for chronic gastritis, leading to gastric ulcers and ultimately gastric cancer. Although it remains controversial whether H. pylori infection causes peptic ulcers under various traumatic stimuli, some related studies suggest that H. pylori infection may be an important factor in delaying peptic ulcer healing. However, the linking mechanism between ICH and H. pylori infection remain unclear. The purpose of this study was to examine the genetic features and pathways shared in ICH and H. pylori infection, and compare immune infiltration. METHODS: We used microarray data for ICH and H. pylori infection from the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was performed on both datasets using the R software and the limma package to find the common differentially expressed genes (DEGs). In addition, we performed functional enrichment analysis on DEGs, determined protein-protein interactions (PPIs), identified Hub genes using the STRING database and Cytoscape software, and constructed microRNA-messenger RNA (miRNA-mRNA) interaction networks. Additionally, immune infiltration analysis was performed with the R software and related R packages. RESULTS: A total of 72 DEGs were identified between ICH and H. pylori infection, including 68 upregulated genes and 4 downregulated genes. Functional enrichment analysis revealed that multiple signaling pathways are closely linked to both diseases. In addition, the cytoHubba plugin identified 15 important hub genes, namely PLEK, NCF2, CXCR4, CXCL1, FGR, CXCL12, CXCL2, CD69, NOD2, RGS1, SLA, LCP1, HMOX1, EDN1, and ITGB3.Also, the correlation analysis of immune cell fractions revealed a limited link between their immune-related common genes and immune cells. CONCLUSION: Through bioinformatics methods, this study revealed that there are common pathways and hub genes between ICH and H. pylori infection. Thus, H. pylori infection may have common pathogenic mechanisms with the development of peptic ulcer after ICH. This study provided new ideas for early diagnosis and prevention of ICH and H. pylori infection.
Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Úlcera Gástrica , Humanos , Redes Reguladoras de Genes , Helicobacter pylori/genética , Perfilación de la Expresión Génica/métodos , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Hemorragia Cerebral , Biología Computacional/métodosRESUMEN
Animal carcass decomposition may bring serious harm to the environment, including pathogenic viruses, toxic gases and metabolites, and antibiotic resistance genes (ARGs). However, how wild mammal corpses decomposition influence and change ARGs in the environment has less explored. Through metagenomics, 16S rRNA gene sequencing, and physicochemical analysis, this study explored the succession patterns, influencing factors, and assembly process of ARGs and mobile genetic elements (MGEs) in gravesoil during long-term corpse decomposition of wild mammals. Our results indicate that the ARG and MGE communities related to wildlife corpses exhibited a pattern of differentiation first and then convergence. Different from the farmed animals, the decomposition of wild animals first reduced the diversity of ARGs and MGEs, and then recovered to a level similar to that of the control group (untreated soil). ARGs and MGEs of the gravesoil are mainly affected by deterministic processes in different stages. MGEs and bacterial community are the two most important factors affecting ARGs in gravesoil. It is worth noting that the decomposition of wild animal carcasses enriched different high-risk ARGs at different stages (bacA, mecA and floR), which have co-occurrence patterns with opportunistic pathogens (Comamonas and Acinetobacter), thereby posing a great threat to public health. These results are of great significance for wildlife corpse management and environmental and ecological safety.
Asunto(s)
Antibacterianos , Genes Bacterianos , Animales , ARN Ribosómico 16S , Mamíferos/genética , CadáverRESUMEN
Corpse decomposition is of great significance to the carbon cycle of natural ecosystem. Carbon fixation is a carbon conversion process that converts carbon dioxide into organic carbon, which greatly contributes to carbon emission reduction. However, the effects of wild animal carcass decay on carbon-fixing microbes in grassland soil environment are still unknown. In this research, thirty wild mammal (Ochotona curzoniae) corpses were placed on alpine meadow soil to study the carbon storage and carbon-fixing microbiota succession for a 94-day decomposition using next-generation sequencing. Our results revealed that 1) the concentration of total carbon increased approximately 2.24-11.22% in the corpse group. 2) Several carbon-fixing bacterial species (Calothrix parietina, Ancylobacter rudongensis, Rhodopseudomonas palustris) may predict the concentration of total carbon. 3) Animal cadaver degradation caused the differentiation of carbon-fixing microbiota structures during succession and made the medium-stage networks of carbon-fixing microbes more complicated. 4) The temporal turnover rate in the experimental groups was higher than that in the control groups, indicating a quick change of gravesoil carbon-fixing microbiota. 5) The deterministic process dominates the assembly mechanism of experimental groups (ranging from 53.42% to 94.94%), which reflects that the carbon-fixing microbial community in gravesoil can be regulated. Under global climate change, this study provides a new perspective for understanding the effects of wild animal carcass decay on soil carbon storage and carbon-fixing microbes.
Asunto(s)
Pradera , Microbiota , Animales , Suelo/química , Microbiología del Suelo , Cadáver , MamíferosRESUMEN
Anaplasmosis is a highly prevalent tick-borne intracellular bacterial disease that affects various host species globally, particularly ruminants in tropical and subtropical regions. However, information regarding the distribution and epidemiology of anaplasmosis in small and large ruminants on Hainan Isalnd is limited. To address this knowledge gap, the present study aimed to assess the occurrence of Anaplasma spp. infections in goats (N = 731) and cattle (N = 176) blood samples using nested PCR and conventional PCR based assays. The results revealed an overall prevalence of 30.1% in goats and 14.8% in cattle. The infection rates of A. bovis, A. phagocytophilum, A. ovis and A. capra in goat samples were 22.7%, 13.8%, 2.0% and 3.4%, respectively, while the infection rates of A. bovis, A. phagocytophilum and A. marginale in cattle samples were 11.4%, 6.3% and 5.7%, respectively. A. bovis exhibited the highest prevalence among the Anaplasma spp. in both goat and cattle samples. In addition, the most frequent co-infection was the one with A. phagocytophilum and A. bovis. It was found that the age, sex and feeding habits of cattle and goats were considered to be important risk factors. Evaluation of the risk factor relating to the rearing system showed that the infection rate for the free-range goats and cattle was significantly higher when compared with stall-feeding system.This study represents one of the largest investigations on the distribution, prevalence, and risk factors associated with Anaplasma infection in ruminants on Hainan Island, highlighting a higher circulation of the infection in the region than previously anticipated. Further reasesrch is necessary to investigate tick vectors, reservoir animals, and the zoonotic potential of the Anaplasma spp. in this endemic region of Hainan Island.
Asunto(s)
Anaplasmosis , Enfermedades de los Bovinos , Enfermedades de las Cabras , Enfermedades de las Ovejas , Enfermedades por Picaduras de Garrapatas , Animales , Bovinos , Ovinos , Anaplasma/genética , Anaplasmosis/epidemiología , Anaplasmosis/microbiología , Cabras/microbiología , Rumiantes/microbiología , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinaria , China/epidemiología , Variación Genética , Filogenia , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/microbiología , Enfermedades de los Bovinos/epidemiología , Enfermedades de las Ovejas/epidemiologíaRESUMEN
Babesiosis is a significant tick-borne disease, which is globally prevalent. Many previous research studies have discussed the presence of Babesia gibsoni, Babesia vogeli, and Babesia canis in dogs in China. In the present study, we have used distinct molecular approaches to detect the presence of Babesia spp. in dogs of Hainan Province/Island, China. A total of 1106 dog blood samples were collected from the Island, of which 61 dog samples were found to be positive for Babesia vogeli. The highest infection rate was 56.7% (17/30) detected from Tunchang, followed by 25.0% (3/12) from Baisha and 10.4% (5/48) from Wenchang. There was only one positive case of Babesia gibsoni, and the infection rate was found to be 0.1% (1/1106). The sequencing results showed that the subjected sample sequences were identical and resembled the Babesia vogeli and Babesia gibsoni sequences available in the database. The results derived from this study will be helpful for planning effective strategies for the treatment, control, and prevention of babesiosis in dogs of Hainan Province/Island.
Asunto(s)
Babesia , Babesiosis , Perros , Animales , Babesia/genética , Babesiosis/epidemiología , Filogenia , China/epidemiologíaRESUMEN
Ticks are important vectors of many pathogens with tremendous impact on human and animal health. Studies of semiochemical interactions and mechanisms underlying chemoreception can provide important tools in tick management. Niemann-Pick type C2 (NPC2) proteins have been proposed as one type of chemoreceptor in arthropods. Here, we cloned two NPC2 genes in the brown dog tick, Rhipicephalus linnaei, the tropical lineage previously named R. sanguineus sensu lato and characterized them functionally. R.linNPC2a and R.linNPC2b genes were found to be expressed at each developmental stage with the highest level in adult males. By using quantitative real-time PCR we revealed expression in multiple tissues, including midgut, ovary, salivary glands and legs. Ligand binding analysis revealed that R.linNPC2b bound a wide spectrum of compounds, with ß-ionone, α-amylcinnamaldehyde, 2-nitrophenol and benzaldehyde displaying the strongest binding affinity (Ki < 10 µM), whereas R.linNPC2a showed a more narrow ligand binding range, with intermediate binding affinity to α-amylcinnamaldehyde and 2-nitrophenol (Ki < 20 µM). Molecular docking indicated that the amino acid residue Phe89, Leu77 and Val131 of R.linNPC2a and Phe70, Leu132 and Phe73 of R.linNPC2b could bind multiple ligands. These residues might thus play a key role in the identification of the volatiles. Our results contribute to the understanding of olfactory mechanisms of R. linnaei and can offer new pathways towards new management strategies.
Asunto(s)
Rhipicephalus sanguineus , Rhipicephalus , Perros , Masculino , Animales , Femenino , Humanos , Rhipicephalus sanguineus/genética , Rhipicephalus/genética , Feromonas , Ligandos , Simulación del Acoplamiento MolecularRESUMEN
CpG methylation is one the most predominant epigenetic modification that has been recognized as a molecular-level biomarker for various human diseases. Taking advantage of methylation-dependent cleavage and encoding flexibility in nucleic acid functions and structures, we demonstrate the cooperative in situ assembly of G-quadruplex DNAzyme nanowires for one-step sensing of CpG methylation in human genomes. This nanodevice displays good specificity and high sensitivity with a limit of detection (LOD) of 0.565 aM in vitro and 1 cell in vivo. It can distinguish 0.001% CpG methylation level from excess unmethylated DNA, quantify different CpG methylation targets from diverse human cancer cells, and even discriminate CpG methylation expressions between lung tumor and precancerous tissues. Importantly, this nanodevice can be performed isothermally in one step within 2 h in a label-free manner without any bisulfite conversion, fluorescence tagging, and PCR amplification process, providing a new platform for genomic methylation-related clinical diagnosis and biomedical research.