Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Trends Cardiovasc Med ; 16(1): 29-34, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16387628

RESUMEN

Normal blood vessel formation is required for the development of nearly all organs during embryogenesis, including lung. Neonatal diseases such as persistent pulmonary hypertension of the newborn and alveolar capillary dysplasia are thought to result in large part from a failure of normal lung vascular development. Therefore, in the past decade, there has been increasing interest in studying the mechanisms underlying the development of the lung circulation to better understand the pathogenesis of these often lethal neonatal lung diseases. It has now been well accepted that in addition to its protean roles in the maintenance of vascular homeostasis, endothelium-derived nitric oxide also plays a pivotal role in postnatal angiogenesis, mediating downstream signaling in response to classic angiogenic factors. Recent findings in endothelial nitric oxide synthase (eNOS)-deficient mice point to a novel and previously unrecognized role of eNOS-NO pathway in fetal lung vascular development and lung morphogenesis. The lung phenotype of eNOS mutants closely resembles alveolar capillary dysplasia in humans, a universally fatal form of persistent pulmonary hypertension of the newborn that presents with defective lung vascular development and respiratory distress in newborn. We anticipate that these new insights into the basic mechanisms of lung vascular development may lead to novel therapeutic strategies for neonatal lung diseases.


Asunto(s)
Pulmón/irrigación sanguínea , Pulmón/embriología , Óxido Nítrico Sintasa/deficiencia , Animales , Inducción Enzimática , Regulación del Desarrollo de la Expresión Génica , Humanos , Recién Nacido , Ratones , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Óxido Nítrico/fisiología , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/fisiología , Alveolos Pulmonares/irrigación sanguínea , Receptores de Factores de Crecimiento/biosíntesis
2.
Circ Res ; 94(8): 1115-23, 2004 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-15016731

RESUMEN

Endothelium-derived NO plays a critical role in the regulation of cardiovascular function and structure, as well as acting as a downstream mediator of the angiogenic response to numerous vascular growth factors. Although endothelial NO synthase (eNOS)-deficient mice are viable, minor congenital cardiac abnormalities have been reported and homozygous offspring exhibit high neonatal mortality out of proportion to the severity of these defects. The aim of the present report was to determine whether abnormalities of the pulmonary vascular development could contribute to high neonatal loss in eNOS-deficient animals. We now report that eNOS-deficient mice display major defects in lung morphogenesis, resulting in respiratory distress and death within the first hours of life in the majority of animals. Histological and molecular examination of preterm and newborn mutant lungs demonstrated marked thickening of saccular septae, with evidence of reduced surfactant material. Lungs of eNOS-deficient mice also exhibited a striking paucity of distal arteriolar branches and extensive regions of capillary hypoperfusion, together with misalignment of pulmonary veins, which represent the characteristic features of alveolar capillary dysplasia. We conclude that eNOS plays a previously unrecognized role in lung development, which may have relevance for clinical syndromes of neonatal respiratory distress.


Asunto(s)
Pulmón/embriología , Óxido Nítrico Sintasa/deficiencia , Alveolos Pulmonares/irrigación sanguínea , Síndrome de Dificultad Respiratoria del Recién Nacido/enzimología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Membrana Basal/ultraestructura , Capilares/patología , Inducción Enzimática , Inhibidores Enzimáticos/farmacología , Matriz Extracelular/ultraestructura , Femenino , Proteínas Fetales/deficiencia , Proteínas Fetales/fisiología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Sustancias de Crecimiento/biosíntesis , Sustancias de Crecimiento/genética , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Humanos , Recién Nacido , Tamaño de la Camada/efectos de los fármacos , Tamaño de la Camada/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , NG-Nitroarginina Metil Éster/farmacología , NG-Nitroarginina Metil Éster/toxicidad , Neovascularización Fisiológica/genética , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/fisiología , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico Sintasa de Tipo III , Trabajo de Parto Prematuro , Embarazo , Surfactantes Pulmonares/metabolismo , Receptores de Factores de Crecimiento/biosíntesis , Receptores de Factores de Crecimiento/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/embriología , Síndrome de Dificultad Respiratoria del Recién Nacido/genética
3.
Am J Respir Crit Care Med ; 175(10): 1014-26, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17322110

RESUMEN

RATIONALE: The acute respiratory distress syndrome is a significant cause of morbidity and mortality in critically ill patients. Angiopoietin-1 (Ang-1), a ligand for the endothelial Tie2 receptor, is an endothelial survival and vascular stabilization factor that reduces endothelial permeability and inhibits leukocyte-endothelium interactions. OBJECTIVES: We hypothesized that Ang-1 counteracts vascular inflammation and pulmonary vascular leak in experimental acute lung injury. METHODS: We used cell-based gene therapy in a rat model of ALI. Transgenic mice overexpressing Ang-1 or deficient in the Tie2 receptor were also studied to better elucidate the mechanisms of protection. MEASUREMENTS AND MAIN RESULTS: The present report provides data that support a strong protective role for the Ang-1/Tie2 system in two experimental models of LPS-induced acute lung injury. In a rat model, cell-based Ang-1 gene transfer improved morphological, biochemical, and molecular indices of lung injury and inflammation. These findings were confirmed in a gain-of-function conditional, targeted transgenic mouse model, in which Ang-1 reduced endothelial cell activation and the expression of adhesion molecules, associated with a marked improvement in airspace inflammation and intraalveolar septal thickening. Moreover, heterozygous Tie2-deficient mice demonstrated enhanced evidence of lung injury and increased early mortality. CONCLUSIONS: These results support a critical role for the Ang-1/Tie2 axis in modulating the pulmonary vascular response to lung injury and suggest that Ang-1 therapy may represent a potential new strategy for the treatment and/or prevention of acute respiratory distress syndrome in critically ill patients.


Asunto(s)
Angiopoyetina 1/genética , Terapia Genética/métodos , Síndrome de Dificultad Respiratoria/terapia , Animales , Adhesión Celular/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Citocinas/metabolismo , Femenino , Fibroblastos/trasplante , Expresión Génica , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Transgénicos , Ratas , Ratas Endogámicas F344 , Receptor TIE-2/genética , Síndrome de Dificultad Respiratoria/patología
4.
Am J Physiol Lung Cell Mol Physiol ; 290(4): L777-L789, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16299054

RESUMEN

Lung development is a highly regulated process directed by mesenchymal-epithelial interactions, which coordinate the temporal and spatial expression of multiple regulatory factors required for proper lung formation. The Iroquois homeobox (Irx) genes have been implicated in the patterning and specification of several Drosophila and vertebrate organs, including the heart. Herein, we investigated whether the Irx genes play a role in lung morphogenesis. We found that Irx1-3 and Irx5 expression was confined to the branching lung epithelium, whereas Irx4 was not expressed in the developing lung. Antisense knockdown of all pulmonary Irx genes together dramatically decreased distal branching morphogenesis and increased distention of the proximal tubules in vitro, which was accompanied by a reduction in surfactant protein C-positive epithelial cells and an increase in beta-tubulin IV and Clara cell secretory protein positive epithelial structures. Transmission electron microscopy confirmed the proximal phenotype of the epithelial structures. Furthermore, antisense Irx knockdown resulted in loss of lung mesenchyme and abnormal smooth muscle cell formation. Expression of fibroblast growth factors (FGF) 1, 7, and 10, FGF receptor 2, bone morphogenetic protein 4, and Sonic hedgehog (Shh) were not altered in lung explants treated with antisense Irx oligonucleotides. All four Irx genes were expressed in Shh- and Gli(2)-deficient murine lungs. Collectively, these results suggest that Irx genes are involved in the regulation of proximo-distal morphogenesis of the developing lung but are likely not linked to the FGF, BMP, or Shh signaling pathways.


Asunto(s)
Proteínas de Homeodominio/genética , Pulmón/embriología , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular/efectos de los fármacos , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/fisiología , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Células Epiteliales/metabolismo , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Expresión Génica , Proteínas Hedgehog , Técnicas In Vitro , Factores de Transcripción de Tipo Kruppel/deficiencia , Factores de Transcripción de Tipo Kruppel/genética , Pulmón/anomalías , Masculino , Mesodermo/metabolismo , Ratones , Ratones Mutantes , Mutación , Oligonucleótidos Antisentido/farmacología , Ratas , Ratas Wistar , Transactivadores/deficiencia , Transactivadores/genética , Proteína Gli2 con Dedos de Zinc
5.
Am J Respir Crit Care Med ; 174(2): 178-86, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16645175

RESUMEN

OBJECTIVES: Hemorrhagic shock followed by resuscitation (HSR) commonly triggers an inflammatory response that leads to acute respiratory distress syndrome. HYPOTHESIS: HSR exacerbates mechanical stress-induced lung injury by rendering the lung more susceptible to ventilator-induced lung injury. METHODS: Rats were subjected to HSR, and were randomized into an HSR + high tidal volume and zero positive end-expiratory pressure (PEEP) or a HSR + low tidal volume with 5 cm H(2)O PEEP. A sham-operated rat + high tidal volume and zero PEEP served as a control. RESULTS: HSR increased susceptibility to ventilator-induced lung injury as evidenced by an increase in lung elastance and the wet/dry ratio and a reduction in Pa(O(2)) as compared with the other groups. The lung injury observed in the HSR + high tidal volume group was associated with a higher level of interleukin 6 in the lung and blood, increased epithelial cell apoptosis in the kidney and small intestine villi, and a tendency toward high levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and creatinine in plasma. CONCLUSIONS: HSR priming renders the lung and kidney more susceptible to mechanical ventilation-induced organ injury.


Asunto(s)
Daño por Reperfusión/complicaciones , Ventiladores Mecánicos/efectos adversos , Alanina Transaminasa/sangre , Animales , Apoptosis , Aspartato Aminotransferasas/sangre , Quimiocina CXCL2 , Creatinina/sangre , Células Epiteliales/patología , Etiquetado Corte-Fin in Situ , Interleucina-6/análisis , L-Lactato Deshidrogenasa/sangre , Pulmón/química , Masculino , Monocinas/análisis , Insuficiencia Multiorgánica/etiología , Ratas , Ratas Sprague-Dawley , Síndrome de Dificultad Respiratoria , Mecánica Respiratoria , Choque Hemorrágico/complicaciones , Síndrome de Respuesta Inflamatoria Sistémica/etiología , Factor de Necrosis Tumoral alfa/análisis
6.
Am J Respir Cell Mol Biol ; 35(2): 182-9, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16543611

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by widespread loss of pulmonary microvasculature. Therefore we hypothesized that angiogenic gene therapy would reverse established PAH, in part restoring the lung microcirculation. Three weeks after monocrotaline (MCT) treatment, Fisher 344 rats were randomized to receive a total of either 1.5 x 10(6) syngeneic fibroblasts (FB) transfected with vascular endothelial growth factor A (VEGF), endothelial NO synthase (eNOS), or null-plasmid transfected FBs. Right ventricular systolic pressure (RVSP) was similarly increased in all MCT-treated groups at the time of gene transfer. Animals receiving the null-vector progressed to severe PAH by Day 35 (P < 0.001). In contrast, eNOS gene transfer significantly reduced RVSP at Day 35 compared with Day 21, whereas VEGF prevented further increases in RVSP over the subsequent 2 wk but did not reverse established PAH. RV hypertrophy was significantly reduced in both the eNOS-treated and VEGF-treated groups compared with the null-transfected controls. Fluorescent microangiography revealed widespread occlusion of the pre-capillary arterioles 21 d after MCT treatment, and animals receiving eNOS gene transfer exhibited the greatest improvement in the arteriolar architecture and capillary perfusion at Day 35. Cell-based eNOS gene transfer was more effective than VEGF in reversing established PAH, associated with evidence of regeneration of pulmonary microcirculation.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/uso terapéutico , Hipertensión Pulmonar/terapia , Pulmón/fisiología , Óxido Nítrico Sintasa de Tipo III/genética , Regeneración , Animales , Angiografía con Fluoresceína , Vectores Genéticos/genética , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/prevención & control , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/patología , Monocrotalina , Óxido Nítrico Sintasa de Tipo III/fisiología , Distribución Aleatoria , Ratas , Ratas Endogámicas F344 , Factores de Tiempo , Factores de Crecimiento Endotelial Vascular/genética
7.
Am J Respir Cell Mol Biol ; 28(2): 159-69, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12540483

RESUMEN

The structural and functional development of the pulmonary system is dependent upon appropriate early vascularization of the embryonic lung. Our previous in vitro studies in a rat model indicated that insulin-like growth factor-I (IGF-I) is a potent angiogenic agent for fetal lung endothelial cells. To assess its role on human vascular lung development, we first examined the expression of IGF-I/II and IGF receptor type I (IGF-IR) in human embryonic and fetal lung tissues at 4-12 wk of gestation. Immunohistochemical and in situ hybridization studies revealed the presence of IGF-I/II-IGF-IR ligands and mRNA transcripts in embryonic lungs as early as 4 wk gestation. Immunotargeting using an anti-IGF-IR neutralizing antibody on human fetal lung explants demonstrated a significant blockade of IGF-IR signaling. Inactivation of IGF-IR resulted in a loss of endothelial cells, accompanied by dramatic changes in fetal lung explant morphology. Terminal transferase dUTP end-labeling assay and TEM studies of anti-IGF-IR-treated lungs demonstrated numerous apoptotic mesenchymal cells. Rat embryonic lung explant studies further validated the importance of the IGF-IGF-IR system for lung vascular development. These data provide the first demonstration of IGF-I/II expression in the human lung in early gestation and indicate that the IGF family of growth factors, acting through the IGF-IR, is required as a survival factor during normal human lung vascularization.


Asunto(s)
Pulmón/irrigación sanguínea , Pulmón/embriología , Receptor IGF Tipo 1/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunohistoquímica , Hibridación in Situ , Técnicas In Vitro , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Pulmón/metabolismo , Neovascularización Fisiológica , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Receptor IGF Tipo 1/genética , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA