Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 226(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36633333

RESUMEN

To successfully capture flying insect prey, a spider's orb web must withstand the energy of impact without the silk breaking. In this study, we examined the anchor threads: the silk lines that anchor the main capture area of the web to the surrounding environment. These anchor threads can account for a large portion of the web, yet are usually excluded from experiments and simulations. We compared projectile capture and kinetic energy absorption between webs with and without access to anchor threads. Webs with anchor threads captured significantly more projectiles and absorbed significantly more energy than those with constrained anchors. This is likely because the anchor threads increase web compliance, resulting in webs with the ability to catch high-energy flying insects without breaking. Anchor threads are one example of how different types of web architecture expand the range of possible prey capture strategies by enabling the web to withstand greater impacts.


Asunto(s)
Arañas , Animales , Conducta Predatoria , Seda , Cinética
2.
Artículo en Inglés | MEDLINE | ID: mdl-33723624

RESUMEN

We develop a mathematical model to capture the web dynamics of slingshot spiders (Araneae: Theridiosomatidae), which utilize a tension line to deform their orb webs into conical springs to hunt flying insects. Slingshot spiders are characterized by their ultrafast launch speeds and accelerations (exceeding 1300 [Formula: see text]), however a theoretical approach to characterize the underlying spatiotemporal web dynamics remains missing. To address this knowledge gap, we develop a 2D-coupled damped oscillator model of the web. Our model reveals three key insights into the dynamics of slingshot motion. First, the tension line plays a dual role: enabling the spider to load elastic energy into the web for a quick launch (in milliseconds) to displacements of 10-15 body lengths, but also enabling the spider to halt quickly, attenuating inertial oscillations. Second, the dominant energy dissipation mechanism is viscous drag by the silk lines - acting as a low Reynolds number parachute. Third, the web exhibits underdamped oscillatory dynamics through a finely-tuned balance between the radial line forces, the tension line force and viscous drag dissipation. Together, our work suggests that the conical geometry and tension-line enables the slingshot web to act as both an elastic spring and a shock absorber, for the multi-functional roles of risky predation and self-preservation.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Modelos Teóricos , Seda/fisiología , Arañas/fisiología , Velocidad al Caminar/fisiología , Animales , Conducta Predatoria/fisiología , Factores de Tiempo , Grabación en Video/métodos
3.
Naturwissenschaften ; 108(6): 60, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34748107

RESUMEN

Entanglements are common in both natural and artificial systems and can result in both beneficial and harmful effects. Most spider webs are static structures held under constant tension and do not tangle. However, many spiders actively load tension into their webs by coiling silk threads that are released to "fire" webs at prey. Here we test whether or not tangling occurs during the rapid release of webs built by the triangle spider Hyptiotes cavatus. We use high-speed videography to examine the release of the spider's web, looking for signs of tangling both visually on the videos and on acceleration graphs. The spider tenses the web by pulling on a silken anchor line using a leg-over-leg movement, deforming the silk into permanent coils and storing excess slack in a loose bundle between the spider's legs. This 1-3cm long bundle of coils straightens during the web's release in as few as 4ms. Though the messy silk coils are pressed closely together, the web's release is never impeded by catastrophic tangling. This lack of serious tangling is perhaps due to the permanent coils preventing random movement of the silk. The coils also compact the loose silk, preventing interference with the spider's movement. The ability to coil its anchor line allows H. cavatus to permanently restructure its silk, facilitating its active web-hunting behavior. Our findings broaden our knowledge of silk manipulation by spiders and may give insights into creating tangle-free systems through structural changes.


Asunto(s)
Seda , Arañas , Animales , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA